Lyle Creek Stream Restoration Project No. 423 2006 Monitoring Report: Year 4 of 5

March 2007

- Submitted to: NCDENR-EEP 1652 Mail Service Center Raleigh, NC 27699-1652
- Prepared by: Jordan, Jones, and Goulding, Inc. 9101 Southern Pine Blvd., Suite 160 Charlotte, NC 28273
- Design Firm: EcoScience Corporation 1101 Haynes Street, Suite 101 Raleigh, NC 27604

Table of Contents

EXECUTIVE SUMMARY

SECTION I – PROJECT BACKGROUND

1. Location and Setting	I-1
2. Mitigation Structure and Objectives	
3. Project History and Background	
4. Monitoring Plan View	

SECTION II – PROJECT CONDITION AND MONITORING RESULTS

A. Vegetation Assessment	
1. Soil Data	II-1
2. Vegetative Problem Areas	II-3
3. Vegetative Problem Area Plan View	II-3
4. Stem Counts	II-3
5. Vegetation Plot Photos	II-5
B. Stream Assessment	II-6
1. Problem Areas Plan View (Stream)	II-6
2. Problem Areas Table Summary	II-6
3. Numbered Issues Photo Section	II-6
4. Fixed Photo Station Photos	II-6
5. Stability Assessment	II-8
6. Quantitative Measures Tables	II-10
7. Hydrologic Criteria	II-14

SECTION III – METHODOLOGY

List of Tables

Project Mitigation Structure and Objectives	I-3
Project Activity and Reporting History	I-4
Project Contacts	I-4
Project Background	I-5
Preliminary Soil Data	II-3
Vegetative Problem Areas	II-4
Stem Counts for Planted Species Arranged by Plot	II-5
Stream Problem Areas	II-7
Categorical Stream Feature Visual Stability Assessment	II-10
Baseline Morphological and Hydraulic As-Built Summary	II-11
Morphology and Hydraulic Monitoring Summary	II-12
Verification of Bankfull Events	II-14
	Project Mitigation Structure and Objectives Project Activity and Reporting History Project Contacts Project Background Preliminary Soil Data Vegetative Problem Areas Stem Counts for Planted Species Arranged by Plot Stream Problem Areas Categorical Stream Feature Visual Stability Assessment Baseline Morphological and Hydraulic As-Built Summary Morphology and Hydraulic Monitoring Summary Verification of Bankfull Events

List of Figures

Figure I	Project Location and Watershed Map	I-2
C	Monitoring Plan View Map	
0	Soils Map I	

List of Appendices

- Appendix A Vegetation Raw Data
 - 1. Vegetation Survey Data Tables
 - 2. Vegetation Problem Area Photos
 - 3. Vegetation Monitoring Plot Photos

Appendix B Geomorphic and Stream Stability Data

- 1. Problem Areas Plan View
- 2. Representative Stream Problem Area Photos
- 3. Stream Photo-Station Photos
- 4. Qualitative Visual Stability Assessment
- 5. Cross-section Plots and Raw Data Tables
- 6. Longitudinal Plots and Raw Data Tables
- 7. Pebble Count Plots and Raw Data Tables

EXECUTIVE SUMMARY

Executive Summary

The following goals for the Lyle Creek stream restoration project were established through the North Carolina Ecosystem Enhancement Program (NCEEP):

- 1. Restore 2,400 feet of an unnamed tributary (UT) to Lyle Creek,
- 2. Enhance the riparian area through planting native species, and
- 3. Exclude cattle access to the UT to Lyle Creek and 800 linear feet of a secondary unnamed tributary.

The Lyle Creek Stream Restoration Project consisted of restoring approximately 1,940 linear feet of an unnamed tributary to Lyle Creek by relocating approximately 1,240 linear feet of existing channel (Restoration, Priority 1) and restoring in-place (Enhancement Level I, Priority 2/3) approximately 700 linear feet of existing channel. The UT's riparian areas were planted with native bare root seedlings and herbaceous cover to enhance the riparian areas and stabilize stream banks. The entire site was fenced to exclude cattle access to the UT and a second UT to Lyle Creek. This report serves as the 4th year of the 5 year monitoring plan for the Lyle Creek stream restoration site.

Results from the 2006 survey indicate the upper, in-place restoration (Reach 1) is maintaining stability and holding grade. There are areas of moderate bank erosion and some signs of stress on one cross-vane within the reach, but no major stressors are apparent. The lower, relocation restoration (Reach 2), is illustrating a trend towards instability. Reach 2 has headcuts migrating through the system causing bedforms to shift and structures to fail. Severe bank erosion is occurring throughout Reach 2, which is causing the stream to over widen and increase the fines within the streambed. The lower three cross-vane structures are either failing or stressed, creating a risk for another headcut. The sill located approximately 150 feet upstream from these structures continues to maintain grade. However, the sill may not maintain stability and hold grade if these structures continue to fail downstream. A remediation plan is being developed by others for the stream restoration portion of the project.

There were three vegetation plots established by EcoScience in 2002. Please refer to the Monitoring Plan View Map (Figure II) for the location of these plots. In addition, four new plots were established by JJG in 2006. Please refer to the Monitoring Plan View Map (Figure II) for the location of these new plots. The plots established by JJG were randomly selected and monitored per the new 2006 North Carolina Ecosystem Enhancement Program protocol. The three previously established plots were also monitored per the new protocol. Planted stems must represent 30% of the stems per acre total under per the new protocol.

The survival rate for woody vegetation monitored for 2006 is 87%. The monitoring data recorded an average of 12 planted stems per plot. The site density is approximately 480 planted stems per acre. The success criterion for these previously established plots requires 260 live stems per acre in monitoring year 4 of 5 (2006). The site has exceeded the vegetation success goal for monitoring year 4 (2006). Furthermore, the natural recruitment woody stems recorded

substantially increases the number of live stems per plot. There is an average of approximately 40 recruitment stems per plot. In total, approximately 50 woody stems per plot were recorded. A review of the planted and natural recruit's monitored indicates a current site density of approximately 2,000 stems per acre.

In conclusion, Reach 1 is stable and functioning as designed. Reach 2 is unstable and is overwidened due the loss or stress of several structures. A remediation plan is being prepared by others for this reach. Vegetation growth has exceeded the success goal of 260 stems per acre with a planted stem density of 480 trees per acre.

SECTION I Project Background

SECTION I Project Background

The background information provided in this report is referenced from previous reports conducted by EcoScience, Inc., North Carolina State University, and Soil and Environmental Consultants, PA.

1. Location and Setting

The Lyle Creek Mitigation Site was developed by the North Carolina Ecosystem Enhancement Program (NCEEP). The site is located in Catawba County, North Carolina immediately northwest of the intersection of Wyke Road and US-70 (Figure I). The Lyle Creek Stream Restoration Project consisted of restoring approximately 1,940 linear feet of an unnamed tributary (UT) to Lyle Creek by relocating approximately 1,240 linear feet of existing channel (Restoration, Priority 1) and restoring, in-place (Enhancement Level I, Priority 2/3) approximately 700 linear feet of existing channel. The restored channel was designed and constructed as an E-channel. The project also included enhancing the associated riparian zone. The restoration project was completed in July 2002.

To access site from Interstate 40, take Exit 138 and turn south onto Wyke Road. Turn right onto Stagecoach Road. Continue on Stagecoach Road for approximately 1 mile, at which point the road will cross the UT to Lyle Creek. The restoration project is located approximately 1,000 feet downstream from Stagecoach Road.

2. Mitigation Structure and Objectives

The Lyle Creek stream restoration project was developed as a mitigation site through the NCEEP. The restoration site is located within the northeastern Piedmont region of the Catawba River Basin (HUC 3050101). Historically, the site was utilized for livestock grazing and agricultural hay production. Previous land uses, such as riparian vegetation removal, dredging and straightening, and livestock access contributed to the UTs degraded state. These activities were thought to have inhibited stream stability, producing an incised channel, with a headcut migration occurring through the site.

The following goals for the Lyle Creek stream restoration project were established:

- 1. Restore 2,400 feet of an UT to Lyle Creek,
- 2. Enhance the riparian area through planting native species, and
- 3. Exclude cattle access to the UT to Lyle Creek and 800 linear feet of a secondary unnamed tributary.

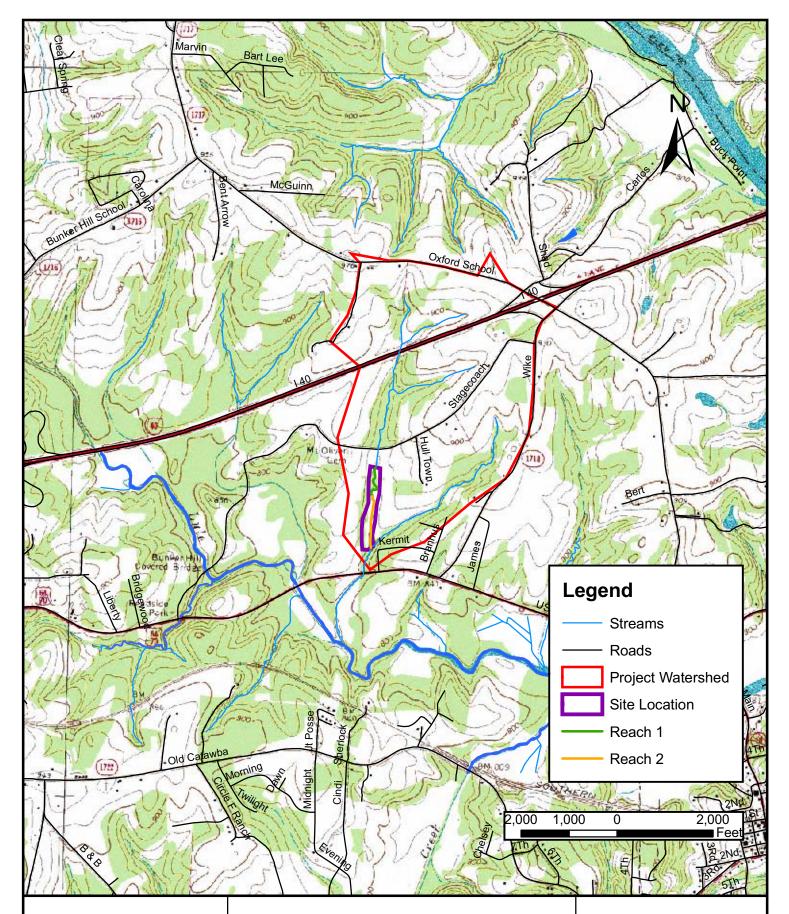


Figure I. Project Location and Watershed Map Lyle Creek Stream Restoration Catawba County, NC Monitoring Report Year 4 of 5

Project # 423 March 2007 Restoring 2,400 linear feet of the UT to Lyle Creek was implemented by enhancing 700 linear feet (proposed to be 1,055 linear feet) and relocating 1,240 linear feet (proposed to be 1,345 linear feet) within a 12.4 acre plot of the UT to Lyle Creek (Table I). The 700 linear feet of stream enhancement, noted as Reach 1 in this monitoring report, involved an in-place restoration approach. The reach was enhanced using vegetation and bank stabilization structures, such as single arm vanes, cross-vanes, J-hooks, and root wads. The restoration of 1,240 linear feet of the UT, noted as Reach 2 in this monitoring report, involved relocating the channel away from a previously straightened ditch. A sinuous, stable pattern, with riffle-pool bedform was constructed. Cross-vanes, J-hooks, and riffles were installed to provide bank stabilization, habitat, and maintain grade control. On a second unnamed tributary to Lyle Creek, approximately 800 linear feet of stream preservation was implemented by installing fencing to exclude cattle access.

The UT's riparian areas were planted with native bare root seedlings and herbaceous cover to enhance the riparian areas and stabilize streambanks. The entire site was fenced to exclude cattle access to the UT Reach 1 and 2 and the second UT (approximately 800 linear feet) to Lyle Creek.

Lyle Creek/Project No. 423								
Segment/Reach	Mitigation	Approach	Linear	Stationing	Comments			
	Туре		Feet	(ft)				
Reach 1 UT to Lyle Creek	EI	P2/3	700	0+00-7+00	Channel restoration, in-place with use of grade control and bank protection structures.			
Reach 2 UT to Lyle Creek	R	P1	1,240	7+00-19+40	Channel restoration, relocation with use of grade control and bank protection structures.			
2 nd UT to Lyle Creek	Р	Р	800	N/A	Preservation/Enhancement; fenced in stream to exclude cattle.			

 Table I

 Project Mitigation Structure and Objectives

(EI=Enhancement Level I, R=Restoration, P=Preservation)

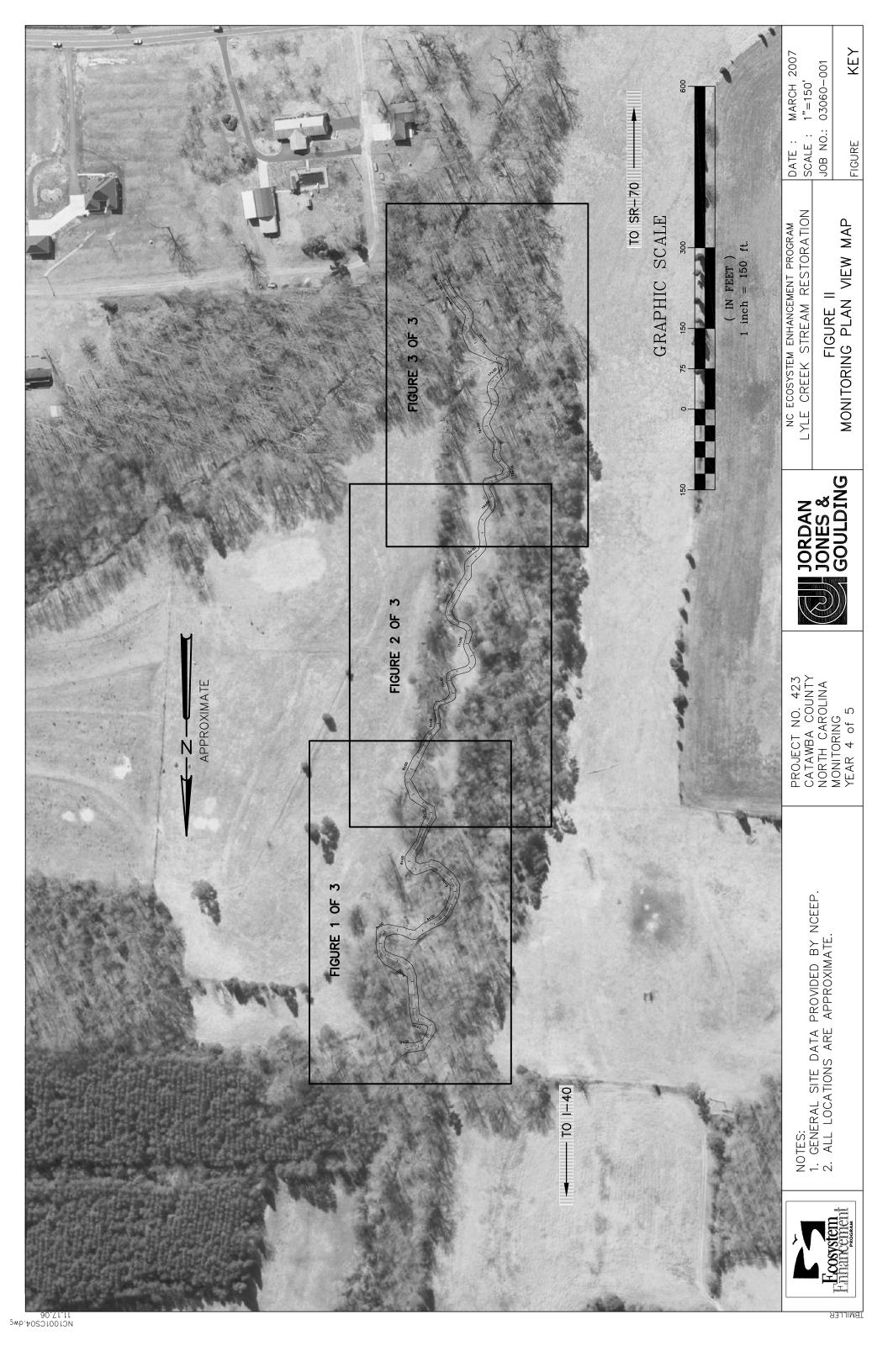
3. Project History and Background

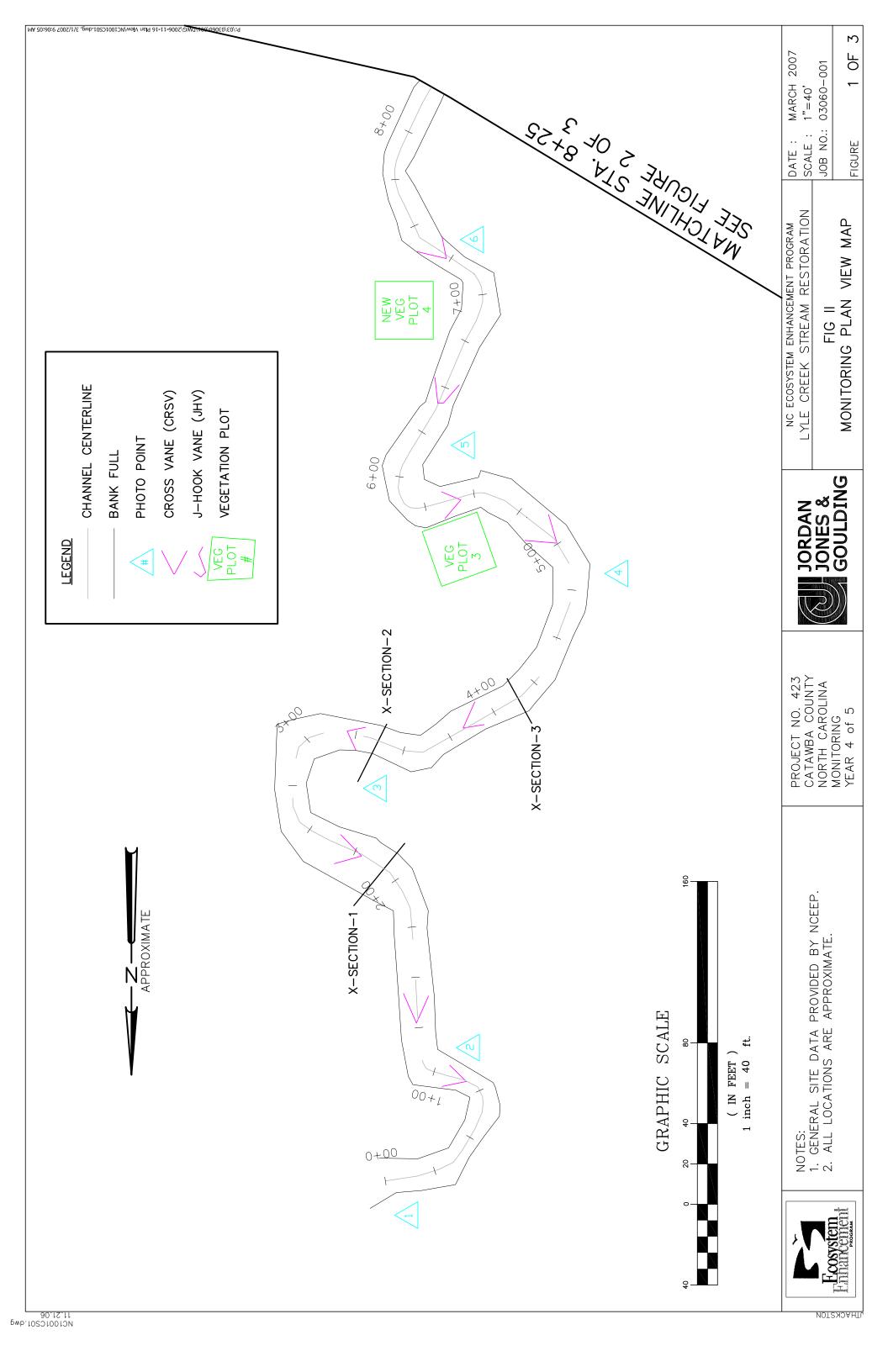
The stream enhancement/restoration was designed by EcoScience Corporation and constructed by North State Environmental. Construction activities were completed in 2002. Monitoring has been conducting annually from 2003 to present, with an as-built survey completed in late 2002/early 2003. This report serves as the 4th year of the 5 year monitoring plan for the Lyle Creek stream restoration site. Tables II and III provide detailed project activity, history and contact information for this project. Table IV provides more in-depth watershed/site background for the project.

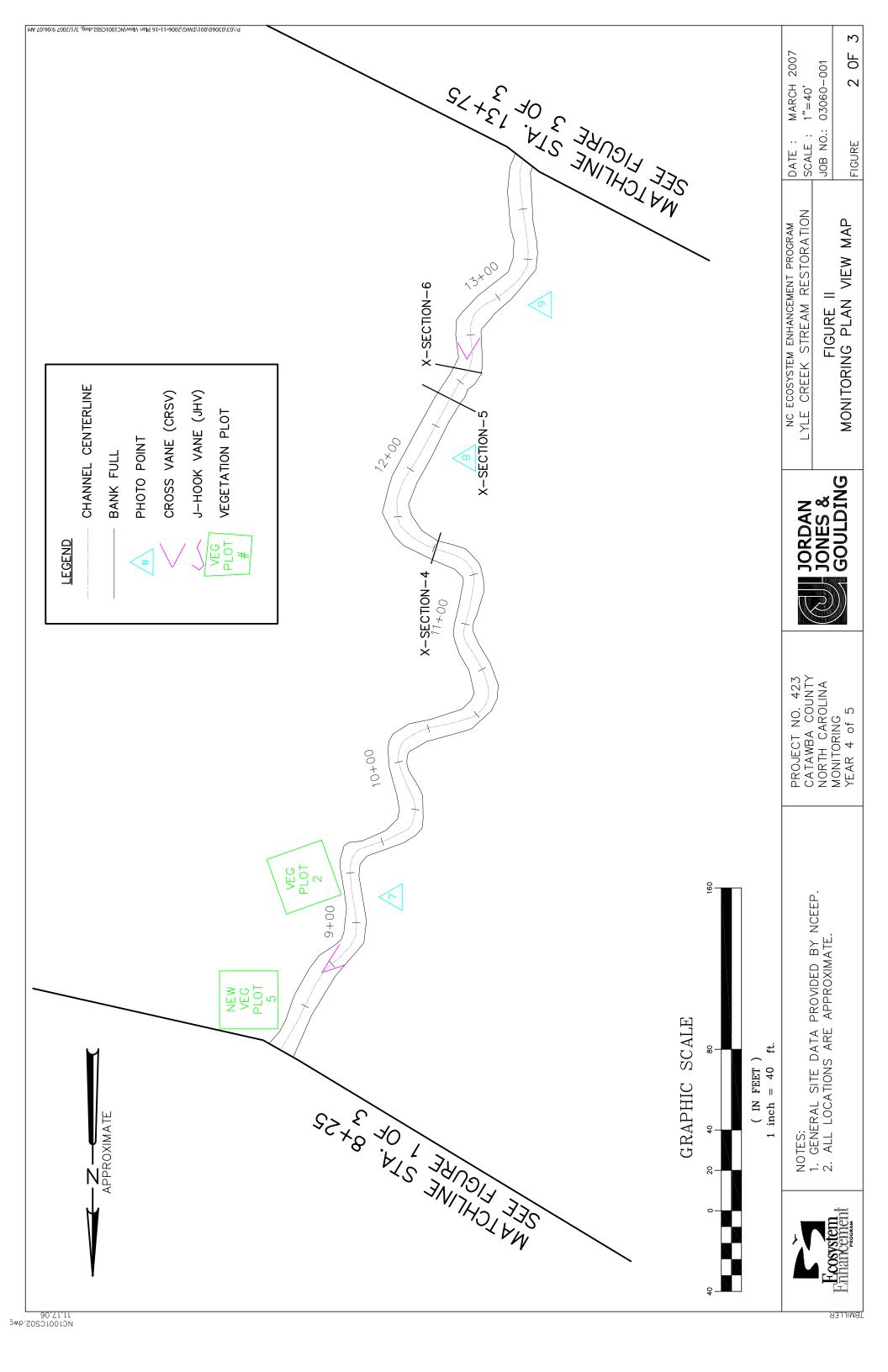
Lyle Creek/Project No. 423							
Activity or Report	Scheduled Completion	Data Collection Completed	Actual Completion or Delivery				
Restoration Plan	Unknown	Unknown	Unknown				
Final Design-90%	Unknown	Unknown	Unknown				
Construction	Unknown	2002	July 2002				
Temporary S&E mix applied to entire project area	Unknown	2002	2002				
Permanent seed mix applied to reach	Unknown	2002	Fall 2002				
Mitigation Plan/ As-Built (Year 0 Monitoring)	2002	2002	February 2003				
Year 1 Monitoring	2003	November 2003	February 2004				
Year 2 Monitoring	2004	July 2004	February 2005				
Year 3 Monitoring	October 2005	December 2005	February 2006				
Year 4 Monitoring	September 2006	September 2006	November 2006				
Year 5 Monitoring	September 2007	TBD	TBD				

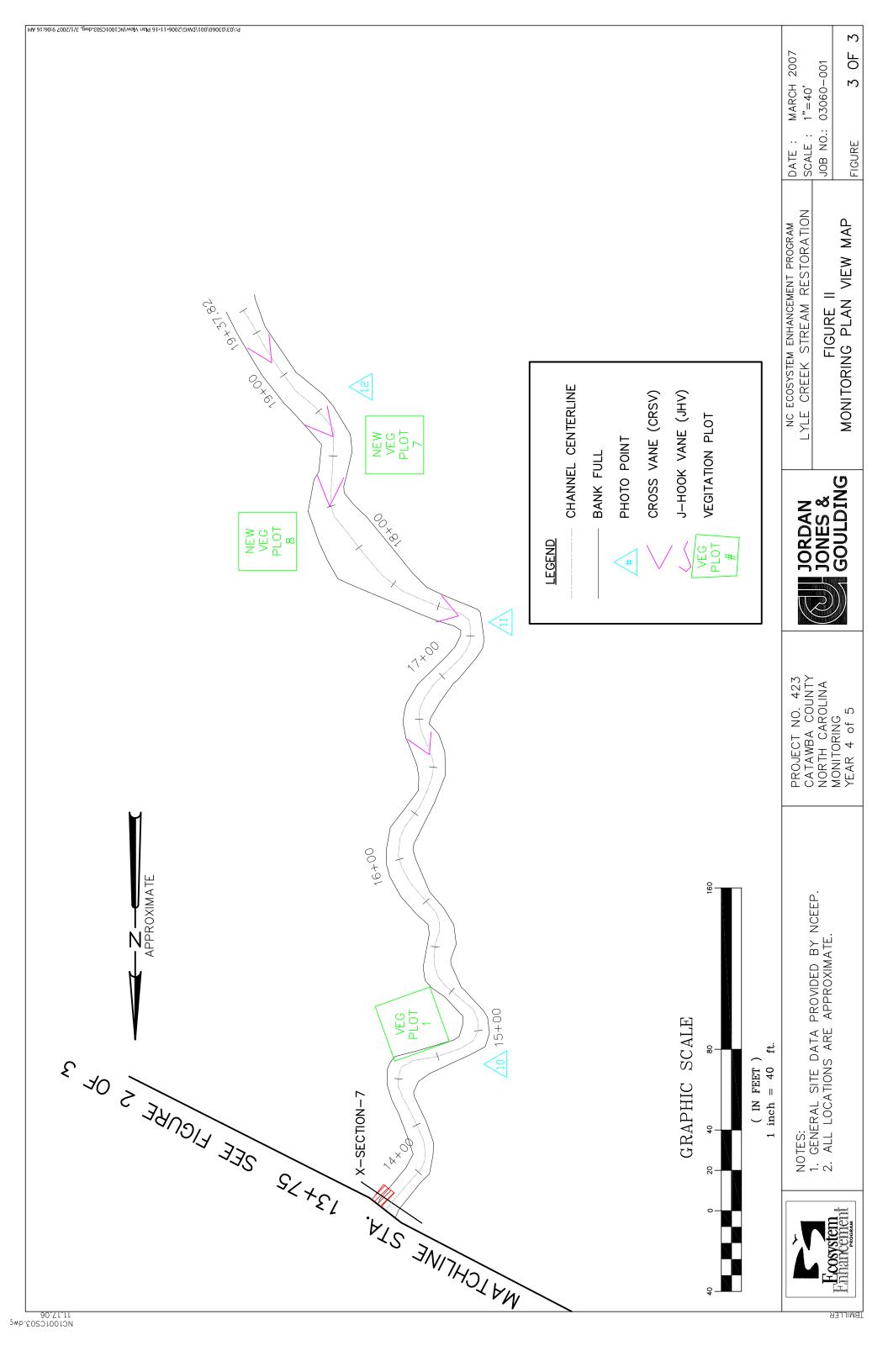
Table IIProject Activity and Reporting History

Table III Project Contacts


Lyle Creek	x/Project No. 423
	EcoScience Corporation
Designer	1101 Haynes Street, Suite 101
	Raleigh, NC 27604
	North State Environmental, Inc.
Contractor's Name	2889 Lowery St., Suite B
	Winston-Salem, NC 27101
Planting Contractor	Unknown
Seeding Contractor	Unknown
	Jordan, Jones, and Goulding, Inc.
Monitoring Performers	9101 Southern Pine Blvd., Suite 160
	Charlotte, NC 28273
Stream Monitoring, POC	Dan Rice, 678-333-0457
Vegetation Monitoring, POC	Dan Rice, 678-333-0457


Lyle Creek/Project No. 423						
Project County	Catawba County, North Carolina					
Drainage Area	0.74 sq mi					
Drainage impervious cover estimate	~10%					
Stream Order	3rd					
Physiographic Region	Piedmont					
Ecoregion	Piedmont					
Rosgen Classification of As-built	Е					
Cowardin Classification	N/A					
Dominant soil types	Cecil-Chewacla					
Reference Site ID	Unknown					
USGS HUC for Project and Reference	3050101					
NCDWQ Sub-basin for Project and Reference	03-08-32					
NCDWQ classification for Project and Reference	WS-IV;CA					
Any portion of any project segment 303d list?	No					
Any portion of any project segment upstream of a 303d listed segment?	No					
Reason for 303d listing or stressor?	N/A					
% of project easement fenced?	100%					


Table IV Project Background


4. Monitoring Plan View

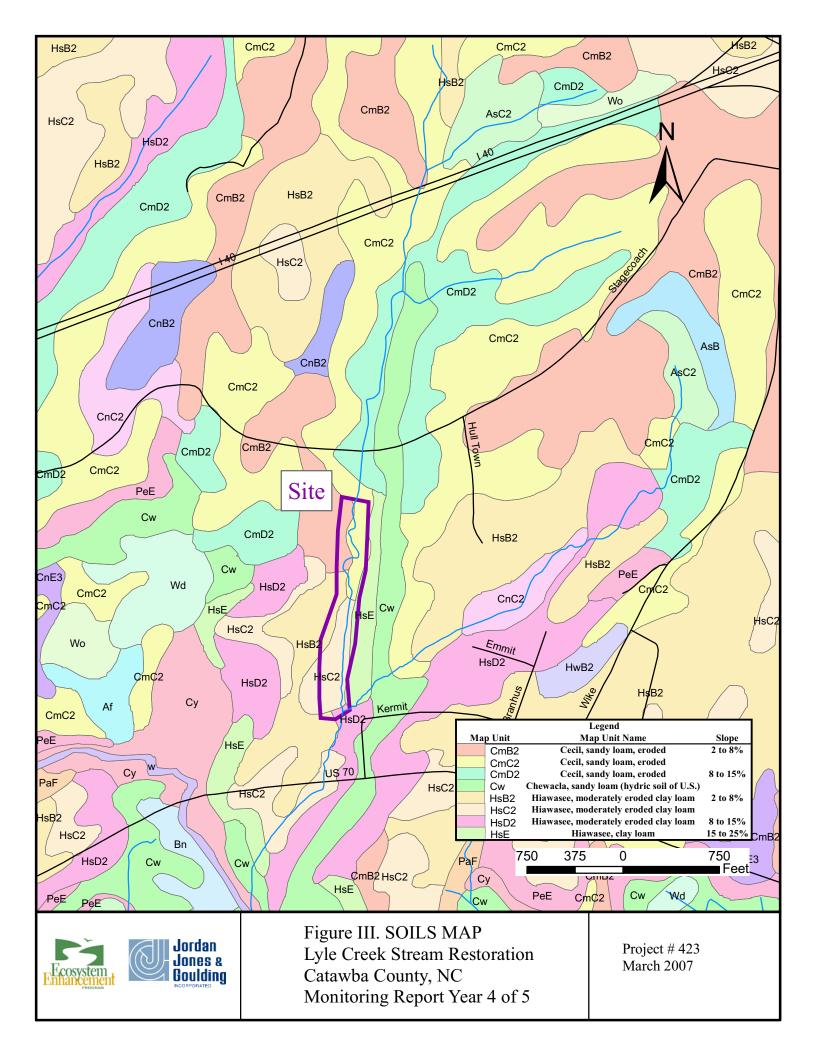
The monitoring plan view map (Figure II) illustrates the location of the longitudinal profile stations, cross-section stations, vegetation plots, and photo points. A total of seven cross-sections were previously established within Reach 1 and 2. Approximately 2,000 linear feet of longitudinal profile was monitored. Three vegetation plots were previously established and four new vegetation plots were established by JJG in 2006. The new plots were established in accordance with NCEEP's revised vegetation monitoring protocol. Photographs were taken upstream and downstream at each cross-section and at existing photo points. No problems occurred that inhibited accurate data assessment.

SECTION II Project Condition and Monitoring Results

SECTION II Project Condition and Monitoring Results

The following monitoring results are from the 2006 (year 4 of 5) survey completed in September, 2006.

A. Vegetative Assessment


Planted zones related to the stream restoration consist of the stream bank and the buffer area adjacent to the stream. The riparian zone begins at the top of bank and proceeds perpendicular to the stream for an average distance of 50 feet. The planted stream bank initiates at base flow elevation and extends to the top of bank. The overall success of these two particular planted zones is good. Live stakes (*Salix nigra* and *Cornus amomum*) and herbaceous species (*Carex* spp. and *Juncus* spp.) along the stream bank are healthy and abundant. The riparian buffer is dominated by a thick herbaceous layer with numerous shrubs and saplings throughout. Natural recruitment vegetation appears to be dominant. This is likely due to the undisturbed forested areas along the right bank of the restoration area causing regeneration of trees.

There were three vegetation plots established by EcoScience in 2002. Please refer to the Monitoring Plan View Map (Figure II) for the location of these plots. The success criterion for these previously established plots requires 260 live stems per acre in monitoring year 4 of 5 (2006). In addition, four new plots were established by JJG in 2006. Please refer to the Monitoring Plan View Map (Figure II) for the location of these new plots. The plots established by JJG were randomly selected and monitored per the new 2006 NCEEP protocol. The three previously established plots were also monitored per the new protocol. Planted stems must represent 30% of the stems per acre total. Please refer to Appendix A for the vegetative survey data table and monitoring plot photos.

1. Soil Data

Lyle Creek is situated within a narrow ridge and valley within the inner Piedmont Belt of the North Carolina Piedmont Physiographic Province. Researchable data indicates that the soils within the project area are those found in alluvial landforms in this physiographic region; however, grading and filling activities during construction likely disturbed the parent soil.

Review of the North Carolina Soil datamart indicates that three soil series are found within the project limits (Figure III and Table V). These soil series consist of Chewacla (*Hydric Soil of the United States*), Cecil, and Hiawasee. Chewacla soils are generally found along stream corridors. These soils are formed from fine alluvial material and are somewhat poorly drained within the project area. Cecil soils are also found in areas adjacent to the stream. However, these soils are not as prevalent as Chewacla. The Cecil soils within the project area are formed from fine alluvial material and are series is generally found on high stream terraces. The undisturbed forested slopes and the surrounding upland consist of this soil type.

Series	Max Depth (in)	% Clay of Surface	K factor	T factor	% Organic matter
Chewacla	60	10 - 35	0.28	5	1.0 - 4.0
Cecil	75	5 - 20	0.28	5	0.5 - 1.0
Hiawasee	60 - 80	10 - 35	0.28	5	0.5 - 2.0

Table V Preliminary Soil Data

2. Vegetative Problem Areas

During the initial assessment conducted in March 2006 as well as the vegetative survey conducted in September 2006, it was noted that some areas of stream bank have suffered localized loss of vegetative cover. In these areas, it is evident that flood events may have caused the bank erosion and the resulting loss of vegetation. Problem areas associated with the riparian buffer zone were also observed. Most notable is the abundance of invasive species such as *Rubus argutus, Rosa multiflora, Ligustrum sinense*, and *Microstegium virmineum*. Please refer to Table VI for more details on vegetative problem areas. Please refer to Appendix A2 and A3 for photos of these areas.

3. Vegetative Problem Area Plan View

Please refer to Appendix B1 and B2 for location of vegetative problems onsite.

4. Stem Count

JJG conducted the vegetative assessment and vegetative plot analysis on September 27, 2006 and September 28, 2006 per the new NCEEP 2006 protocol. Seven plots were surveyed, three of these were previously established by EcoScience in 2002 and four were newly established plots by JJG in 2006. The vegetative plots established on site were selected randomly and represent the riparian buffer zone.

Trees planted within the plots monitored include overcup oak species (*Quercus lyrata*), river birch (*Betula nigra*), American sycamore (*Platanus occidentalis*), green ash (*Fraxinus pennsylvanica*), black willow (*Salix nigra*), and silky dogwood (*Cornus amomum*). In addition, natural recruitment vegetation was also monitored within these plots. Species encountered were tulip poplar (*Liriodendron tulipifera*), sweet gum (*Liquidambar styraciflua*), tag alder (*Alnus serrulata*), black gum (*Nyssa sylvatica*), Eastern red cedar (*Juniperus virginana*), oak species (*Quercus spp.*), and species that were originally planted. Please refer to Table VII for a summary of stem counts.

Vegetative Issue	Location	Probable	Cause	
Invasive population	Plot 1	existing seed s storm flows, a disturbance		
Invasive population	Plot 2	existing seed source, storm flows, and land disturbance		
Invasive population	Plot 3	existing seed s storm flows, a disturbance		
Invasive population	Plot 5	existing seed s storm flows, a disturbance		
Invasive population	Plot 6	existing seed s storm flows, a disturbance		
Invasive population	Plot 7	existing seed s storm flows, a disturbance		
Vegetative Issue	Station	Probable Cause	Photo Point #	
moderate bank erosion / loss of stream bank vegetation	0+25 to 0+35	storm flows	A2.1	
moderate bank erosion / loss of stream bank vegetation	4+25 to 4+50	storm flows	A2.1	
severe bank erosion / loss of stream bank vegetation	5+75 to 6+00	storm flows	A2.2	
severe bank erosion / loss of stream bank vegetation	9+25 to 9+40	storm flows	A2.2	
severe bank erosion / loss of stream bank vegetation	10+25 to 10+50	storm flows	A2.2	
severe bank erosion / loss of stream bank vegetation	11+55 to 11+90	storm flows	A2.2	
severe bank erosion / loss of stream bank vegetation	13+55 to 13+80	storm flows	A2.2	
severe bank erosion / loss of stream bank vegetation	14+35 to 14+70	storm flows	A2.2	
severe bank erosion / loss of stream bank vegetation	16+00 to 16+30	storm flows	A2.2	
severe bank erosion / loss of stream bank vegetation	16+60 to 17+10	storm flows	A2.2	
severe bank erosion / loss of stream bank vegetation	17+80 to 18+00	storm flows	A2.2	
moderate bank erosion / loss of stream bank vegetation	18+45 to 18+60	storm flows	A2.1	
severe bank erosion / loss of stream bank vegetation	18+75 to 19+38	storm flows	A2.2	

Table VIVegetative Problem Areas

	Y	ear 3 (20 Plot Dat	/	Total # of				Year 4 (2 etation P			
Species	1	2	3	planted stems Year 4 (2006)	1	2	3	4	5	6	7
Acer rubrum				4							4
Betula nigra	3	5	1	32	1*	5*	1*	2	9	6	8
Fraxinus pennsylvanica	1			4		*		2	1	1	
Nyssa sylvatica				3				1	1		1
Platanus occidentalis			2	18	*		2		2	11	3
Quercus lyrata				1					1		
Salix nigra	1		3	8	1*		2			2	3
Liriodendron tulipifera	6		2	8	6		2	N/A	N/A	N/A	N/A
Alnus serrulata	3			2	2			N/A	N/A	N/A	N/A
Juniperus virginiana		1	2	2			2	N/A	N/A	N/A	N/A
Totals (2006)	14	6	10	82	10	5	9	5	14	20	19
Initial Totals (2005)	29	6	10	N/A	29	6	10	N/A	N/A	N/A	N/A
Average # of Stems per plot		10		N/A				12			
Percent Survival (2006)	48%	100%	100%	N/A	35%	83%	90%	100%	100%	100%	100%

Table VIIStem Counts for Planted Species Arranged by Plot – Year 4 of 5 (2006)

* Species had numerous volunteers counted

The survival rate for the woody vegetation monitored for 2006 is 87%. At this stage in the project and vegetation development, JJG is unable to clearly determine which stems were planted and which stems could be natural recruitment. This is also true for the newly established plots 4 through 7. JJG decided to measure the largest trees as the planted specimens and recorded the smaller stems as natural recruitment. The monitoring data recorded an average of 12 planted stems per plot. The site density is approximately 480 planted stems per acre, which exceeds the year 4 goal of 260 planted stems per acre. Furthermore, the natural recruitment woody stems recorded substantially increases the number of live stems per plot. There is an average of approximately 40 recruitment stems per plot. In total, approximately 50 woody stems per plot were recorded. A review of the planted and natural recruit's monitored indicates a current site density of approximately 2,000 stems per acre. The site density was calculated by dividing the average number of stems by the plot size (0.025 ac). All plots for this project were NCEEP standard of 10m X 10m (100 sq. m).

In conclusion, the vegetation throughout the stream and riparian restoration project meets the success requirements. Although some loss of stream bank vegetation has occurred, the overall growth of the riparian buffer is good. Per the success criterion for year 4 of 5 (2006), the site has exceeded 260 stems per acre.

5. Vegetation Plot Photos

Please refer to Appendix A3 for photographs of the vegetation monitoring plots.

B. Stream Assessment

Stream dimension, pattern, profile and substrate were evaluated within 1,940 linear feet of the stream restoration site. The stream assessment including walking the entire stream reach and monitoring 1,940 linear feet of longitudinal profile and seven pre-established cross-sections. Please refer to Tables VIII, IX, and X for the stability assessments and the as-built morphology and hydraulic summary. Refer to Table XI for monitoring years 2003-2006 morphology and hydraulic summary, and Appendix B for the problem area plan view map, stability assessment, stream photographs, and raw data.

1. Problem Areas Plan View (Stream)

Please refer to Appendix B1 for problem areas plan view map.

2. Problem Areas Table Summary

Table XIII below provides categorical feature issues by station, the suspected cause and denotes a representative photo of the condition, which is located in Appendix B2.

3. Numbered Issues Photo Section

Please refer to Appendix B2 for problem areas plan view photos.

4. Fixed Photo Station Photos

Please refer to Appendix B3 for photo station photos.

Table VIIIStream Problem Areas(Please refer to Appendix B2 for photos)

Lyle Creek/Project No.423						
Feature Issue		Station Numbers	Suspected Cause	Photo ID		
	Reach 1	00+25 - 00+45	Erosion under tree root due to excess shear stress			
Bank erosion - moderate	Reach I	04+20 - 04+50	Moderate bank slumping due to excess shear stress - LB	B2.1		
Bank crosion - moderate	Reach 2	14+75 - 14+90	Bank undercutting due to excess shear stress - RB	D2.1		
		18+45 - 18+65	Moderate erosion due to shifting of upstream pool to RB			
	Reach 1	05+75 - 06+05	No bank protection on downstream end of bend resulting in severe erosion - LB			
		09+20 - 09+40	Severe bank erosion and failure due to insufficient channel capacity and excess shear stress - LB			
		10+00 - 10+25	Severe bank erosion and failure due to insufficient channel capacity and excess shear stress - LB			
		11+60 - 11+95	Severe bank erosion and failure due to channel migration and excess shear stress - LB			
		13+55 - 13+85	Bank undercut and failed due to excess shear stress - LB			
Bank erosion - severe		14+35 - 14+70	Bank undercut and failed due to channel migration, downcutting, and excess shear stress - LB	B2.2		
	Reach 2	15+25 - 15+45	Bank undercutting due to excess shear stress - LB			
		17+80 - 18+00	Severe erosion due to excess shear stress - LB			
		16+00 - 16+30	Stream downcut and channel shifted resulting in severe erosion and tree fall - LB			
		16+70 - 17+10	Severe bank erosion and failure due to upstream structure failure - LB			
		18+75 - 19+05	Severe bank erosion and failure due to upstream structure failure - RB			
		19+10 - 19+40	Severe bank erosion and bank failure below right arm of failed cross vane - RB			

Table VIII Con't.Stream Problem Areas(Please refer to Appendix B2 for photos)

		Lyle C	Creek/Project No.423	
Feature Iss	ue	Station Numbers	Suspected Cause	Photo ID
		08+85 - 09+00	Insufficient channel capacity shifting riffle downstream	
		10+90 - 11+15	Insufficient channel capacity shifting riffle downstream	
		11+95 - 12+20	Insufficient channel capacity shifting riffle downstream	
Downcut/lost riffle	Reach 2	14+10 - 14+30	Insufficient channel capacity shifting riffle downstream into pool	B2.3
		15+10 - 15+20	Insufficient channel capacity shifting riffle downstream into pool	
		15+75 - 16+00	Insufficient channel capacity shifting riffle downstream into pool	
Lateral bar	Reach 1	06+60 - 06+80	Stream over widened	B2.4
Mid-channel bar	Reach 2	14+70 - 14+75	Mid-channel bar formed from upstream erosion	B2.5
		14+95	Log vane structure detached from bank and blocking channel due channel erosion under log.	
Structure - failed	Reach 2	16+70	Right vane arm collapsed due to shifting channel and excess shear stress	B2.6
		19+25	Right vane arm eroded and dislodged due total failure of structure and bank	
	Reach 1	05+00	Erosion at top right vane arm due to insufficient channel capacity	
Structure - stressed		17+50	Erosion under invert & footer rock and stressing right arm	B2.7
Succure - Suessed	Reach 2	18+30	Erosion behind left vane arm due to insufficient channel capacity	D2.1
		18+60	Erosion under invert and footer rock	

5. Stability Assessment

The upstream section (Reach 1) of the project consists of Enhancement Level I. The overall pattern, profile, and dimensions of this section appear stable with some isolated signs of moderate erosion. The section of the channel that was relocated (Reach 2) is showing significant signs of instability. The pattern, profile and dimensions of the channel appear to be shifting in Reach 2. A general overview is provided below.

Reach 1: Restored Channel In-Place: Enhancement Level I (700 ft)

There are areas of moderate erosion associated with the outer bank of tight meander bends within Reach 1; however, these banks still appear to be stable. There is one area (Station 05+75 to 06+05) of severe erosion, bank instability, and poor bank protection near the downstream end of this section. This is a tight bend, and there is insufficient bank cover to protect the bank. One

cross-vane (Station 05+00) is showing signs of stress on the right arm, but the bank is stable, and there is sufficient bank cover.

Cross-sections 1, 2 and 3 are located within Reach 1. Cross-section 1 is a pool that was previously filling in. Since then, the pool has deepened; thereby, decreasing the width to depth ratio. Cross-section 2 is a riffle and cross-section 3 is a pool, both have shown slight bankfull width increases, which lead to an increase in width to depth ratio. The reach appears to be maintaining stability with stable structures and minimal bank erosion; however, both the d50 and d84 from the surveyed riffle cross-section have decreased over the monitoring years. The d50 has changed from medium to fine sand and the d84 has significantly changed from medium gravel to coarse sand. The area immediately upstream of Reach 1 is showing signs of bank erosion and instability, which is most likely the source of the sedimentation and fining occurring within Reach 1. Please refer to Tables VIII, IX, X, XI, and Appendix B for detailed stream assessment problem area results.

Reach 2: Relocated Channel: Restoration (1,240 ft)

In several riffle areas, there are indications of an active headcut, in which the stream elevation has dropped, and the riffle material has shifted downstream and deposited immediately upstream of pools. Typically, the bend immediately downstream of these areas is severely eroded and often collapsed. As a result of this instability, the stream is beginning to show signs of pattern migration. Several meander bends are severely eroded with bank failure. The bank erosion is a major source of instream sedimentation. Many of the structures installed to maintain grade and stability have failed or are stressed. For most cross-vanes, the failure or stress is associated with only one vane arm. The one log vane (Station 14+95) installed within Reach 2 has failed and is now lodged as an obstruction in the stream. Upstream of the convergence point, there are three cross-vanes that step the elevation down to the elevation of the adjoining UT of Lyle Creek and the end of the project. The stress and failure level of these structures increase as the stream elevation drops to meet the elevation of the convergence point. The most downstream structure has completely failed, and there is a risk of a head cut formation from the downstream convergence point upstream to an existing sill. The upstream sill is located approximately 150 feet above the downstream end of the project and these vanes. This sill is holding well, and currently there are no signs of headcutting. However, this sill may not hold if the downstream vanes continue to fail and lose grade. Please refer to Table VIII, IX, X, XI, and Appendix B for detailed stream assessment and problem area results.

Reach 2 includes cross-section's 4, 5, 6, and 7. Cross-section 4 is a riffle, which appears to have overwidened and is now building a new bench at innerberm. Cross-section 5 is a riffle that has shifted approximately 5 feet to the left from its original as built station. Cross-section 6 is a pool that has previously downcut and appears to be aggrading. The pool is filling in, which is illustrated by the decrease in its width to depth ratio and mean depth. Cross-section 7 is a pool with an undercut bank. It is very unstable and eventually, will have have bank failure (left). This pool also shifted in 2005 approximately 3 feet from previous survey stations.

In summary, Reach 1 has areas of moderate bank erosion and some signs of stress on one crossvane within the reach, but no major stressors are apparent. The lower, relocation restoration (Reach 2), is illustrating a trend towards instability, with headcut formations and severe bank erosion throughout. A maintenance plan is currently being developed by others for Reach 2.

		Creek/Project No nhancement Lev						
Feature	As-Built (2002)	MY1 (2003)	MY2 (2004)	MY3 (2005)	MY4 (2006)			
A. Riffles	-	-	-	36 %	97.9%			
B. Pools	-	-	-	92 %	87.5%			
C. Thalweg	-	-	-	92 %	100%			
D. Meanders	-	-	-	67 %	93.3%			
E. Bed General	-	-	-	86 %	93.7%			
F. Vanes/J Hooks, etc	-	-	-	89 %	94.5%			
G. Wads and Boulders N/A -								
H. Bank Performance								
		Creek/Project No ocation Restorat						
Feature	As-Built (2002)	MY1 (2003)	MY2 (2004)	MY3 (2005)	MY4 (2006)			
A. Riffles	-	-	-	36 %	62.5%			
B. Pools	-	-	-	92 %	91.65%			
C. Thalweg	-	-	-	92 %	50%			
D. Meanders	-	-	-	67 %	46.7%			
E. Bed General	-	-	-	86 %	97.43%			
F. Vanes/J Hooks, etc	-	-	-	89 %	35.8%			
G. Wads and Boulders	-	-	-	N/A	-			
H. Bank Performance	_	-	_	_	72.6%			

 Table IX

 Categorical Stream Feature Visual Stability Assessment

(MY3 data represents data for the entire Reach, and cells noted with a (-), data was not provided).

6. Quantitative Measures Tables

Tables X and XI, display morphological summary data from all monitoring years. The as-built data provided in the previous monitoring reports was not accurately reported between years; therefore, JJG referenced regional curves to verify cross-sectional area to determine which data set to report. The as-built data provided in Table X was taken from the North Carolina State University 2003 monitoring report. Raw survey data can be found in Appendix B.

Project Conditioning and Monitoring Results

Table XBaseline Morphology and Hydraulic As-Built SummaryLyle Creek/Project No. 423

Tests Gigg Dial Regist Grown Interval Project References Stream Degin Reach Reach <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>As-Built</th><th></th><th></th></th<>														As-Built		
Mail Mail <th< th=""><th></th><th>USGS Gage Data</th><th>Regional Curve</th><th>e Interval</th><th>Pre-Existi</th><th>ng Condition</th><th>Project</th><th>Reference Strea</th><th></th><th>ign</th><th></th><th></th><th>Reach 1</th><th></th><th>Re</th><th>ach 2</th></th<>		USGS Gage Data	Regional Curve	e Interval	Pre-Existi	ng Condition	Project	Reference Strea		ign			Reach 1		Re	ach 2
Attach Image: block	DIMENSION	Max	Min	Med						Max		Min	Max			
Atea	Bankfull Width (ft)	-		-	-			-		-		11.8	16.3			
Anti-	Floodprone Width (ft)]	-			-	-
Image: constraint of the state of	Bankfull Cross-sectional Area											15.6	20.8			
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bankfull Mean Depth											1.2	1.4			
$ \left(\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bankfull Max Depth											2.2	3.1	2.2		
Image: state in the s	Width/Depth Ratio							ı		ı		9.8	11.6	10.2		
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Entrenchment Ratio															
Image: second secon	Wetted Perimeter (ft)												ı			ı
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hydraulic Radius (ft)															
Image: constraint of the set of th	Bank Height Ratio												1.0			1.0
$\left(\begin{array}{c c c c c c c c c c c c c c c c c c c $	PATTERN															
10 1 14 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.4 37.5 22.5 22.4 37.5 22.5 </td <td>Channel Beltwidth (ft)</td> <td></td> <td>33</td> <td>141</td> <td>88</td> <td></td> <td></td>	Channel Beltwidth (ft)											33	141	88		
1 1 1 1 1 1 1 1 1	Radius of Curvature (ft)						-					14.9	37.5	22.4		
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Meander Wave Length (ft)							ı		ı		33	114	63		ı
PARAMETERS USGS Gage Data Regional Curve Interval Pre-Existing Condition Project Reference Stream Design 3-4 1 - - - 0 - 0 00 0	Meander Width Ratio						-		-							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	PROFILE															
Image: bound of the section	Riffle Length (ft)															
$I = \frac{14}{10} + $	Riffle Slope (ft/ft)										0		0.0364	0.0141		
Indext Index Index Index <td>Pool Length (ft)</td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td>ı</td> <td></td> <td>ı</td> <td></td> <td>14</td> <td>64</td> <td>27</td> <td></td> <td>1</td>	Pool Length (ft)		1			1		ı		ı		14	64	27		1
IPARAMETERS C <thc< th=""> C <thc< td=""><td>Pool to Pool Spacing (ft)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>22</td><td>161</td><td>54</td><td></td><td></td></thc<></thc<>	Pool to Pool Spacing (ft)											22	161	54		
Matrix for the form of the form	SUBSTRATE															
USGS Gage Data Regional Curve Interval Pre-Existing Condition Project Reference Stream Design As-Built USGS Gage Data Regional Curve Interval Pre-Existing Condition Project Reference Stream Design As-Built USGS Gage Data Regional Curve Interval Pre-Existing Condition Project Reference Stream Design As-Built USGS Gage Data Regional Curve Interval Pre-Existing Condition Project Reference Stream Design As-Built USGS Gage Data Regional Curve Interval Pre-Existing Condition Project Reference Stream Design As-Built USGS Gage Data Regional Curve Interval Project Reference Stream Design As-Built USGS Gage Data Regional Curve Interval Project Reference Stream Design As-Built USGS Gage Data Regional Curve Interval Project Reference Stream Design As-Built USGS Gage Data Regional Curve Interval Project Reference Stream Design As-Built USG I Sign ISG ISG ISG ISG ISG ISG USG ISG ISG ISG ISG ISG </td <td>D50 (mm)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C</td> <td></td> <td></td> <td></td> <td>0.09</td> <td>0.19</td> <td></td> <td></td> <td></td>	D50 (mm)							C				0.09	0.19			
USGS Gage Data Regional Curve Interval Pre-Existing Condition Project Reference Stream Design As-Built -	D85 (mm)							þ			-	0.52	15.91			
USGS Gage Data Regional Curve Interval Pre-Existing Condition Project Reference Stream Design As-Built -																
- -	ADDITIONAL REACH PARAMETERS	USGS Gage Data	Regional Curve	e Interval	Pre-Existi	ng Condition	Project	Reference Strea		ign	A	s-Built				
- -	Valley Length (ft)	1	1					1					ı			
- -	Channel Length (ft)	I				I		ı		,			ı			
- -	Sinuosity	I	1					I								
- -	Water Surface Slope (ft/ft)	ı						·		ı						
pattern and profile were provided from the previous North Carolina State University monitoring reports from both pool and riffle cross-sections	Bankfull Slope (ft/ft)	•											ı			
Cells noted with a (-), data was not provided ***********************************	Rosgen Classification	-											ı			
*Ranges provided for the as-built dimension, pattern and profile were provided from the previous North Carolina State University monitoring reports from both pool and riftle cross-sections	Cells noted with a (-), data was not provided	ž			1											
	*Ranges provided for the as-built dimension, pattern	l and profile were provid	ed from the previou	us North Caro	lina State L	Jniversity mon	itoring repor	ts from both poo	and riffle	cross-sectio	Suc					

Jordan, Jones and Goulding, Inc. March 2007

> Lyle Creek Stream Restoration Project Year 4 of 5 Monitoring Project No. 423

Project Conditioning and Monitoring Results

Table XI Morphology and Hydraulic Monitoring Summary Lyle Creek/Project No. 423

					Reach 1 (In Place Restoration)	Restoration)						
DIMENSION		Cre	Cross-Section #1-Pool		0	Cross-Section #2-Riffle	tiffle			Cross-Section #3-Pool	on #3-Pool	
	2003	2004	2005	2006	2003	2004	2005	2006	2003	2004	2005	2006
Bankfull Width (ft)	16.50	13.70	18.16	17.60	18.60	18.60	12.79	19.83	16.20	17.10	14.28	17.60
Floodprone Width (ft)	N/A	N/A	50.00	N/A	N/A	N/A	50.00	>100	N/A	N/A	50.00	N/A
Bankfull Cross-sectional Area	14.10	12.50	21.09	18.94	28.07	30.00	13.44	29.19	26.08	27.40	13.65	26.43
Bankfull Mean Depth	06.0	0.90	1.16	1.08	1.50	1.60	1.05	1.47	1.60	1.60	0.96	1.50
Bankfull Max Depth	1.70	1.40	1.97	2.44	2.40	2.40	1.45	2.65	2.00	2.00	1.63	2.55
Width/Depth Ratio	18.33	15.22	15.64	16.30	12.40	11.63	12.16	13.49	10.13	10.69	14.94	11.73
Entrenchment Ratio	N/A	N/A	2.75	N/A		I	3.91	>2.2	N/A	N/A	3.50	N/A
Wetted Perimeter (ft)	N/A	N/A	19.02	19.17		ı	13.48	21.19	N/A	N/A	14.96	19.37
Hydraulic Radius (ft)	N/A	N/A	1.11	0.99	I	ı	1.00	1.36	N/A	N/A	0.91	1.36
Bank Height Ratio	I	I	ı	1.00	I	I	ı	1.00	ı	ı		1.00
SUBSTRATE						r					r.	
D50 (mm)	0.29	0.33	N/A	0.13	0.29	0.07	N/A	0.18	0.45	0.08	N/A	0.12
D84 (mm)	0.76	0.66	N/A	0.83	13.33	0.31	N/A	0.83	1.01	0.40	N/A	2.00
					Reach 1 (In Place Restoration)	Restoration)						
PATTERN		2003	3		2004			2005			2006	
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	42.04	109.17	54.60	42	109	55	*	*	*	29	110	52
Radius of Curvature (ft)	13.34	48.60	30.91	13.3	48.6	30.9	*	*	*	15	50	29.5
Meander Wave Length (ft)	58.89	177.06	148.76	59	177	149	*	*	*	60	166	148.5
Meander Width Ratio		-		N/A	N/A	N/A	*	*	*	1.71	6.47	3.06
PROFILE												
Riffle Length (ft)	6	68	21	6	68	21	*	*	*	1.00	33.00	8.75
Riffle Slope (ft/ft)	0.0017	0.0474	0.0212	0.0017	0.0474	0.0212	*	*	*	0.00	0.08	0.01
Pool Length (ft)	11	49	27	11	49	27	*	*	*	7.00	68.40	17.00
Pool to Pool Spacing (ft)	28	140	66	28	140	66	*	*	*	11.60	84.75	36.50
*2005 Survey did not break up stream into separate types of restoration reaches (Reach 1: Inplace Restoration and Reach 2: Relocated Restoration) Cells noted with a (-) data was not provided	e types of restor:	tion reaches (Rea	ach 1: Inplace Restoration	and Reach 2: Relocate	ed Restoration)							

Jordan, Jones and Goulding, Inc. March 2007

Cells noted with a (-), data was not provided Cells noted with a (N/A), data was not applicable

Lyle Creek Stream Restoration Project Year 4 of 5 Monitoring Project No. 423

Table XI cont.Morphology and Hydraulic Monitoring SummaryLyle Creek/Project No. 423

							Reach 2 ((Relocation Restoration)	Restoration)							
DIMENSION		Cross-Section #4-Riffle	on #4-Riffl	6		Cross-Sect	Cross-Section #5-Riffle	a		Cross-Section #6-Pool	in #6-Pool		Cr	oss-Sectio	Cross-Section #7-Pool	
	2003	2004	2005	2006	2003	2004	2005	2006	2003	2004	2005	2006	2003	2004	2005	2006
Bankfull Width (ft)	10.80	10.80	9.67	12.00	13.90	13.80	11.95	14.80	13.50	15.70	14.65	17.50	11.20	9.00	11.02	13.94
Floodprone Width (ft)	I	I	50.00	>100	I	I	50.00	>100	N/A	N/A	50.00	N/A	N/A	N/A	50.00	N/A
Bankfull Cross-sectional Area	17.76	17.00	13.51	16.38	20.73	25.20	13.77	20.45	27.31	28.50	21.65	25.72	16.20	18.90	13.66	22.70
Bankfull Mean Depth	1.60	1.60	1.40	1.36	1.50	1.80	1.15	1.40	2.00	1.80	1.48	1.47	1.40	2.10	1.24	1.63
Bankfull Max Depth	2.60	2.80	2.31	2.66	2.60	2.50	1.81	2.57	2.70	2.90	2.34	2.63	2.10	2.40	1.93	2.51
Width/Depth Ratio	6.75	6.75	6.92	8.82	9.27	7.67	10.37	10.72	6.75	8.72	9.91	11.90	8.00	4.29	8.89	8.55
Entrenchment Ratio	I	I	5.17	>2.2	I	1	4.18	>2.2	N/A	N/A	3.41	N/A	N/A	N/A	4.54	N/A
Wetted Perimeter (ft)	I	I	11.01	13.63	I	ı	12.84	16.34	N/A	N/A	15.70	18.79	N/A	N/A	12.82	17.87
Hydraulic Radius (ft)	ı	1	1.23	1.20	1	•	1.07	1.25	N/A	N/A	1.38	1.37	N/A	N/A	1.07	1.27
Bank Height Ratio	I	I	I	1.00	I	ı	I	1.00	1	I	ı	1.00	I	I	I	1.00
SUBSTRATE																
D50 (mm)	0.11	0.33	1	0.12	0.33	1.05	1	28.64	0.71	0.26	N/A	14.43	0.34	0.41	N/A	0.10
D84 (mm)	3.11	79.40	I	38.50	17.52	8.64	1	64.00	31.78	19.80	N/A	54.50	3.00	0.71	N/A	0.23
					Re	Reach 2 (Relocation Rest	cation Resto	oration)								
PATTERN		2003			2004		200	2005 (entire reach)*	<u>h)*</u>		2006					
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med				
Channel Beltwidth (ft)	22	56	33	32	84	42	26	103	48	15	56	31				
Radius of Curvature (ft)	17	39	21	16	47	23	19	51	28	10	40	15				
Meander Wave Length (ft)	49	150	71	53	165	82	48	211	115	42	150	67				
Meander Width Ratio		I	I	I	1	-	2	2	2	1	3	2				
PROFILE																
Riffle Length (ft)	7	39	17	L	28	15	1	-		3	38	16				
Riffle Slope (ft/ft)	0.0056	0.0494	0.0171	0.0065	0.0480	0.0210	0.0000	0.1000	0.0300	0.0000	0.0572	0.0137				
Pool Length (ft)	6	41	23	6	41	23	12	62	32	2	56	18				
Pool to Pool Spacing (ft)	27	176	46	31	92	43	12	153	70	17	211	56				
*2005 Survey did not break up stream into separate types of restoration reaches (Reach 1: Inplace Restoration and Reach 2:	arate types	of restoratic	in reaches (Reach 1: In	place Resto	wation and F	Rel	located Restoration)	ation)							
Cells noted with a (-), data was not provided																
Cells noted with a (N/A), data was not applicable	ole															

Lyle Creek Stream Restoration Project Year 4 of 5 Monitoring Project No. 423

ADDITIONAL REACH PARAMETERS	2003	2004	2005		2006
				Reach 1	Reach 2
Valley Length (ft)	N/A	N/A	1337		1337
Channel Length (ft)	N/A	N/A	1940		1940
Sinuosity	N/A	N/A	1.45		1.45
Water Surface Slope (ft/ft)	N/A	N/A	Not Reported	0.0067	0.0081
Bankfull Slope (ft/ft)	N/A	N/A	0.01	0.0060	0.0075
Rosgen Classification	N/A	N/A	C4		C4

Table XI cont.Morphology and Hydraulic Monitoring SummaryLyle Creek/Project No. 423

7. Hydrologic Criteria

A crest gauge has been installed upstream of cross-section 4. The table below is a verification that one bankfull or greater event occurred within the Lyle Creek restoration project in November 2006. Other indicators such as old wrack lines were observed at the bankfull and greater elevations within the restoration site as well as.

Table XII. Verification of Bankfull Events

		Lyle Creek/P	roject No. 423	
]	Date of Collection	Date of Occurrence	Method	Photo # (if available)
	11/24/06	Unknown	Crest Gauge	N/A

SECTION III Methodology

SECTION III Methodology

IV. Methodology

Methods employed for the Lyle Creek Stream Restoration Project were a combination of those established by standard regulatory guidance and procedures documents and the North Carolina State University and Soil and Environmental Consultants monitoring reports.

Appendix A (Click here)

APPENDIX A

Vegetation Raw Data

1. Vegetation Survey Data Tables*

2. Vegetation Problem Area Photos

3. Problem Monitoring Plot Photos

*Raw data tables have been provided electronically.

SEE ATTACHED .PDF FILE NOTED AS "VEG DATA SHEETS-2006" FOR VEGETATION SURVEY DATA TABLES

Prepared For:

Lyle Creek Stream Restoration Year 4 of 5

March 2007 Date: Project No.:

> Jordan Jones & Goulding

423

Appendix A1. Vegetation Survey Data Tables

• • • • • • • • • • •

1

GENERAL INFOR	MATION	LOCATION	PLOT DIAGRAM Fill in ONE of the templates below, using the key to draw GPS location, photos and posts. Edit shape if
Project Label:		General:	plot doesn't match one of the templates. Draw any landmarks, such as streams, banks, fences, etc.
Project Name: Ly/e	ork	State: NC County: Cake by	Standard 10m x 10m Non-standard 5m x 20m (14.142m diagonal): (20.616m diagonal): (x,y) (meters) (Plot origin
<u>Team</u> : <u>7</u> 56 Plot:		Quadrangle:	Y-axis Y $(0,0)$ point $(0,0)$ point
Level 1 (planted stems on Evel 2 (planted and nature	y) al stems)	Place Names: 1)	$\begin{array}{c c} \hline \\ \hline $
<u>Start Date:</u> 9 / 2 e.g.: JAN / 15	7/06	2) 3)	$\begin{array}{c c} \hline X-\mathbf{axis} \\ \hline & & \\ \hline \\ \hline$
End Date (if different):		Land Owner:	
Party	Role**	$\bigotimes \frac{GPS}{x=} \frac{Receiver Location}{y=} $ (m):	Plot Size (ares, default=1): (An "are" is 100 m²) \bigcirc > Photo Identifier(s):
Broy	<u>Plot</u> Leader	Datum: SYNAD83/WGS84 I NAD27 if UTMs used	If more space is needed, check the box and use back of datasheets.
K Mulling	Co-level	Lat: (or UTM-N) decimal deg. meters e.g. 35.16623 e.g. 3962248	
		Long: e.g. (or UTM-E) e.g. e.g.	10m
		-125.12413 710524	
**Roles: Co-leader, Ass	istant, Guide,	Coordinate Accuracy (m radius): e.g. 30 54 b miles GPS File Name: $hy health (0/10)$	Plot Location: (directions to plot, landscape content) Pt bar of festored fresh proto pt 10/ aligned along bark
Land owner, Taxo Soil Drainag		SITE CHARACTERISTICS	
 Excessively drained Somewhat excessive 	ly drained	Elevation: \pm $\Box m$ Slope (deg):	Plot Rationale: (why location was chosen for the plot)
□ Well drained ☐ Moderately well drai	ned	Aspect (deg):	previously established location
□ Somewhat poorly dr		Compass Type: 🗆 magnetic 🕁 true	Western Classical
 Poorly drained Very poorly drained 		Plot Placement □ Representative	Other Notes: (investive species erosion disturbances etc.)
WATER Percent of Plot Submer Mean Water Depth:	rged: %	 □ Random □ Stratified random □ Stratified random □ Transect component □ Systematic (grid) □ Capture specific feature 	Other Notes: (invasive species, erosion, disturbances, etc.) Aubus aguilus, multiplon and chinese privit
Authority: (42 h		JSED FOR PLANT IDENTIFICATION , <u>Publ. Date</u> :	4 30 + dimeter Tul. p piplars in plot

Required Fields in Bold and Underlined. *Definitions and/or values are in the Definitions section of the CVS Field Guide.

· · · •

1 1

©2006 Carolina Vegetation Survey. Form PLT12, ver 6.2

		l Woody			VO LEVE			
Leader: BAY P	roject: Ly	le OPIL Team	: <u>JJ6 pi</u>		<u>Date</u> :	9 1271	06_	Page Zof 🦕
Species Name	Source	<u>Coord</u>		ddh (mm)	<u>Height</u>	DBH	<u>Vigor</u>	Damage
	Source	X (m)	Y (m)		<u>(cm)</u>	(cm)'n	<u>vigor</u>	Damage
Hindlich Elm		5.4	2.4	4/16	27			
Salivnigs		61	7.5		154	14,6	4	
Solix negre		8.0	8.4		144	14/16	4	
Platarys occ.		3.0	7.4	8/16	58		2	
Seliv nice		1.6	9.0	5/16	33		1	66
Sely nogra Butula nogra		1.2	7.6	5/16	58		2	
Bythely and		1.2	6,3	3/16	26		$\overline{1}$	
Deminantiqua				<u>,,,,</u>	Y		, ,	
						·		
				9.5	66			
				<u> </u>	391	2.7		······
					366	2.2		
			<u> </u>	Gr	147	× · 2	P	
				9.5	84			
·	<u> </u>			8	147			
<u></u>				8	66			
<u></u>							-	<u><u></u></u>
								
·								
	1							
				· ·				
<u></u>			<u> </u>			·		······································
]		
		· · · · · · · · · · · · · · · · · · ·						
	-	·		<u> </u>	l			
								
				ļ				
						<u> </u>		,
Source: <u>Cultivated</u> , <u>Transplant</u> , <u>Ball and Burlap</u> , <u>Pot</u>	, Bare <u>R</u> oot						d, <u>M</u> issing.	
©2006 Catolina Vagetation Survey								nimal, Human <u>Tram</u> pled, <u>Unkn</u> own, specify other. Form PWS12, ver 6,3

Planted Woody Stem Data: CVS Levels 1 & 2

©2006 Carolina Vegetation Survey.

eader: 04 eight Cut-Off for Stem		Proje	ct:	ylebill	Team: 🔨	/oody S <u>(مار مار</u>	Q1.	<u>, </u>	<u>ate: 9/</u>	27/00		Ares	(=100n	n²):	<u> </u>		Page	<u>f of 7</u>
<u>eight Cut-Off for Stem</u>	<u>s</u> (all ster	ms short								cm								<u> </u>
			SEE	EDLINGS —	1			APLINGS -	– DBH	,	r	<u> </u>	REES	<u> </u>	BH			
Species Name	5	Z c Mod	Sub- seed	10 cm- 50 cm	50 cm- 100 cm	100 cm- 137 cm	Sub- Sapl	0-1 cm	1-2.5 cm	2.5-	5-	10-	15-	20-	25-	30-	35-	≥40 (write dł
Bueros falcata			<u> </u>	9 ¥ 0	e													
Jumpens ing			<u> </u>	٩	9	•	<u> </u>											
Cornus Phile			<u> </u>	24			<u> </u>											
Samburs Cam					•													
Liquidenter sty				9	9 T 9													
Liquidender sig					4 T 4		<u> </u>											
Caryo slasa			<u> </u>	# # 4 a														
Carya Michan	1		<u> </u>		•		<u> </u>											
Carya Michau Drosfyrovi uni	>		<u> </u>	• / ~	•													
			<u> </u>			;												
							<u> </u>											
						-												
			<u> </u>															
			<u> </u>	· · · · · · · · · · · · · · · · · · ·														
			<u> </u>			-	<u> </u>			····· ··· -·· -··								
			<u> </u>				<u> </u>		-									
			<u> </u>				<u> </u>											
						1												
			<u> </u>				<u> </u>											
			<u> </u>				<u> </u>											
			<u> </u>				<u> </u>											
			<u> </u>				<u> </u>											
		_					<u> </u>					ļ						
			 					• 3 •										

4

÷

Natural Woody Stem Data: CVS Levels 2 & 3

page 1 of 1

GENERAL INFORM	MATION	LOCATION	PLOT DIAGRAM Fill in ONE of the templates below, using the key to draw GPS location, photos and posts. Edit shape if
Project Label:		General: Stasecoard Rd / S/I-40	
Project Name: Lyle	CLK	State: NC County: Caluba	Standard 10m x 10m Non-standard 5m x 20m Posts Key (14.142m diagonal): (20.616m diagonal): (x,y) Key
Team: JJ6		- IC Lakuba	Y-axis ♠ Y▲ (meters) OPlot origin
Plot: 7		Quadrangle:	(0 , 0) $(0, 0)$ $(0, 0)$ $(0, 0)$ $(0, 0)$ $(0, 0)$
Level 1 (planted stems onl	y)	Place Names: 1)	Bearing of (10, 12)
Excevel 2 (planted and natur Start Date: 7 / 2	7 / 06	2) 3)	Plot X-Axis:
e.g.: JAN / 15		Land Owner:	
End Date (if different):	1 1		Plot Size (ares, default=1): → Photo
Party	Role**	$\bigotimes \frac{\text{GPS}}{x=} \frac{\text{Receiver Location (m):}}{y=}$	(An "are" is 100 m ²) Identifier(s):
	Plot	Datum: UTM Zone:	If more space is needed, check the box and use back of datasheets.
BFox	Leader	T NAD83/WGS84 🗆 NAD27 if UTMs used	Layout: (anything unusual about plot layout and shape)
K Mulldrax	co-leud	Lat: (or UTM-N decimal deg. mete	
	N	e.g. 35.16623 e.g. 396224	
		Long: (or UTM-H	
		e.g. e. -125.12413 71052	
		Coordinate Accuracy (m radius):	Plot Location: (directions to plot, landscape content)
		e.g. 30 Sub miter	left Bank of Lestored leach
**Roles: Co-leader, Ass	istant Guide	GPS File Name: Lyle cak [10]0	
Land owner, Taxo		SITE CHARACTERISTICS	
Soil Drainag	e*	Flevation:	🗆 more
□ Excessively drained		±ît.	Plot Rationale: (why location was chosen for the plot)
Somewhat excessive Well drained	ly drained	Slope (deg): 0 - 2 %	
Moderately well drai		Aspect (deg):	established previous monitors period
 Somewhat poorly dr. Poorly drained 	ained	Compass Type: magnetic true	·
□ Very poorly drained		Plot Placement E Representative	more
WATER		□ Random Further detail	
Percent of Plot Subme	rged:	□ Stratified random of placemen can be men-	
Magn Water Deut	0%	tioned in Plo	
Mean Water Depth:) cm	□ Capture specific feature Rationale.	
TAXONOMIC ST	· ·	USED FOR PLANT IDENTIFICATION	-
1 1/1	fuid	, Publ. Date:	_ []
Required Fields in Bold an	d Underlined	*Definitions and/or values are in the Definitions s	ection of the CVS Field Guide. ©2006 Carolina Vegetation Survey. Form PLT12, ver 6.2

<

	lanted	Woody	Stem D	ata: C	VS Leve	ls 1 & 2		
Leader: Bhy PI	roject: Ly	h car Team:	<u> 556 PI</u>				06	Page Zof 3
Species Name	Source	<u>Coordi</u>		ddh	Height	DBH	Vigor	Damage
	Bource	X (m)	Y (m)	1(mm)-		(CR1)11		Duinago
Betala Nisra	<u> </u>	1.0	1.9	10/16	80		Z	
But la Misra		1.0	7,2	12/14	87		3 U	
Frayinus Penn		1.0	F.5		13	12/16		
Betala Nisra		2,7	2,7		82 97	16/16	3	
Betula Nigra		3.2	1.4	15/16			4	
Acer rubnm		4.0	0.8	15/16	114		4	
Fraxing pen		4,3	3.3	13/16	97		4	
Pehilo Nigla		2,2	8.2	1 ¹⁷ /14	101		4	
Arer Rusam		5.2	5.3	4/16 = 0.2	37		2	·
Betule Nigra		5.8	1.6	13/16	81		3	-
Betula Nigra Betula Nara		7.3	2,6	12/16	72		3	
Behla ma		6.7	3.3	12/14	80		3	
Betila Nora		7.2	4.0	10/16	70		2	
Betala niça		8.0	9.0	17/14	93		3	
		-						
				1				
· .				1.6	203			
				1,9	221			.
· · · · · · · · · · · · · · · · · · ·				(287	1.9		
					208	2.54		ś
· · · · · · · · · · · · · · · · · · ·				2.4	247			
				2.4	290			
· · · · · · · · · · · · · · · · · · ·				2.2		•		
			·····	2.2	257			
· · · · · · · · · · · · · · · · · · ·				0.64	94			
				2.2	206			
				1.9	183			
······				1.9	203			
				1.6	178			
				2.2	236			
. <u></u>				1 K	12			
	1							
Source: <u>C</u> ultivated, <u>Transplant</u> , <u>Ball and Burlap, Pot</u>			Vigor: <u>4</u> =e	I xcellent, <u>3</u> =g	ood, <u>2</u> =weak,	<u>l</u> =unlikely to su 0=Deac	rvive year, I, <u>M</u> issing.	\downarrow
	Damage: <u>R</u>	emoval, <u>Cut</u> , <u>Mov</u>	ving, <u>Beav</u> er, <u>I</u>	Deer, Rodents,	Insects, Game,	Livestock, Other/	Unknown Al	umal, Human <u>Tram</u> pled,
©2006 Carolina Vegetation Survey.	Sit	e Too <u>Wet</u> , Site T	<u>oo Dry, Flood</u>	, <u>Droug</u> ht, <u>St</u>	orm, <u>Hurr</u> icane,	<u>Dis</u> eased, <u>Vine</u> S	trangulation,	Unknown, specify other. Form PWS12, ver 6.3

4 N

• /

Leader: Kox <u>Height Cut-Off for Stems</u> (all				le CFIC	<u>Team</u> : <u>కొ</u>	allied): 110		<u>- D</u> 50cm □ 10	ate: / / `	-7/06 cm		Ares	(=100m	1 ²):	•		Page	<u>3</u> of <u>3</u>
neight cut-on for Steins (an				DLINGS -				APLINGS -				Т	REES	— D]	BH			
Species Name	₹ C	Mod*	Sub-	10 cm- 50 cm	50 cm- 100 cm	100 cm- 137 cm	Sub- Sapl		1-2.5 cm	2.5-	5-	10-	15-	20-		30-	35-	≥ 40 (write dbf
Acer Rubrum				••	•													
Betula Nigim				•	• •	2												
Fraxing pin. Liriodendion Tul.																		. <u></u>
Viriodendion Tul.					7													
Wingra Elm				A .							5 N							
Altrus secula 12						**												
Cornus Morida				٠														
Santras Con					*													
· · · · ·																		
				-														
																		
		-																
			I					·····				· ·· · · · · ·						
<u> </u>																		
								······································										
		 						·										
<u> </u>									1									
©2006 Carolina Vegetation Survey.	1	*Mod	lule is fo	I or Sampling Lev	vel 3,	• 1	• 2	• 3 •	• 4 •• <u>+</u>	5 🛉 6	• 7	• • 8	1	9	10	IFc	n 1 NW	'S23, ver 6

Natural Woody Stem Data: CVS Levels 2 & 3

page 1 of 1

GENERAL INFORM	MATION	LOCATION	PLOT DIAGRAM Fill in ONE of the templates below, using the key to draw GPS location, photos and posts. Edit shape if
Project Label:		General: Stace Cond R215 I.40	plot doesn't match one of the templates. Draw any landmarks, such as streams, banks, fences, etc.
Project Name: Lyle	CRK	State: NC County: Cataba	Standard 10m x 10m Non-standard 5m x 20m $\nabla \frac{x \cos x}{x,y}$ Key (x,y)
<u>теат</u> : <u>5</u> 56		Quadrangle:	$\begin{array}{c c} Y \\ \hline \\ Y \\ \hline \\$
Plot: 3			(0, (v)) GPS location
Level 1 (planted stems onl Level 2 (planted and nature	y) al stems)	Place Names: 1)	$\begin{array}{c c} \hline \\ \hline $
Start Date: Seft / 2 e.g.: JAN / 15	7106	2) 3)	$\overline{X-Axis:}$ $\overline{(0, 0)}$ $\underline{X-Axis}$ $\overline{(0, 0)}$ $\underline{140}_{\circ}$ $\overline{(0, 0)}$
End Date (if different);		Land Owner: Unknown	
Party	Role**	$\bigotimes \frac{\text{GPS}}{x=} \frac{\text{Receiver Location}}{y=} \text{(m):}$	Plot Size (ares, default=1): (An "are" is 100 m²) \bigcirc -> Photo Identifier(s):
Ant	<u>Plot</u>	Datum: UTM Zone:	NOTES If more space is needed, check the box and use back of datasheets.
Bentox	<u>Leader</u>	□ NAD83/WGS84 □ NAD27 if UTMs used	Layout: (anything unusual about plot layout and shape)
Kevin Mullinny	(0-18ud	Lat: (or UTM-N) decimal deg. meters	
		e.g. 35,16623 e.g. 3962248	
		Long: (or UTM-E)	
· · · · · · · · · · · · · · · · · · ·		e.g. e.g -125 12413 710524	
		Coordinate Accuracy (m radius):	Plot Location: (directions to plot, landscape content)
		e.g. 30	
		GPS File Name:	Start of open clearing on left Bank
**Roles: Co-leader, Ass Land owner, Taxor			
Soil Drainag		SITE CHARACTERISTICS	
□ Excessively drained	-	Elevation: $\Box m$	Plot Rationale: (why location was chosen for the plot)
□ Excessively drained □ Somewhat excessive	ly drained	Slope (deg):	
⊮Well drained	•	Aspect (deg):	$\frac{1}{1}$
Moderately well drai		Compass Type: magnetic frue	Alrendy established
□ Poorly drained	-	Plot Placement	more
□ Very poorly drained		□ Representative	Other Notes: (invasive species, erosion, disturbances, etc.)
WATER		□ Random Further details	
Percent of Plot Submer	<u> </u>	□ Stratified random of placement can be men-	Chinese prived, Japanese Homysackille multiplace Rose
Mean Water Depth:	<u>6</u> _%	I ransect component tioned in Plot	
water Depth:	() cm	□ Systematic (grid) Rationale. □ Capture specific feature	- Rightins
TAXONOMIC ST-		USED FOR PLANT IDENTIFICATION	- Krain the here
	a-Foi		i more
	•		

Required Fields in Bold and Underlined. *Definitions and/or values are in the Definitions section of the CVS Field Guide.

÷.

- t

©2006 Carolina Vegetation Survey. Form PLT12, ver 6.2,

eader: Blax I	Project: Ly	Le Cen-Team:	J76 PI	lot: 3	Date:	9 1271	06	Page 2 of 2
		Coordi		ddh	Height	DBH	X7:	
Species Name	<u>Source</u>	X (m)	Y (m)	"(mm)	10(cm)-	12.000)	<u>Vigor</u>	Damage
Salix Nigia	R	1.55	1.05		141	1/16	4	
Betty Nigra Beth Nigra	R	3.5	1.95	0.5	57	2.5	3	
Beth Nig	R	3.2	1.7	6.25	42	· 0,25,	3	
Betle Nigra	R	3.5	2.7	0.48	49	9.4.8	3	Α.
Bella Niggs	R	4.2	2.65	0.50	53	0,5	3	
FIGXIAUS PARSylast	- R	6.3	3.0		144	1.0	4	
Fraxiaus Lenn.	R	10	bib	0.	115	13/16	4	
Butile Nigra	R	26	8.55	15/16	80		5	
Metula Nigra	R	2,4	11.5	14/16	79		3	
Fraxmus luns/	R	0	10	1	110	12/14	3	
Betula Nigra	R	3.7	9.3	9/16	61		4	
Betula Nigra	R	4.0	9.17	12/16	76		3	· · ·
Sall'v Nisra	R	4.0	10.0	1/16	70		3	
Betching	R	7.0	9,0	12/16	58		3	۰.
Betul, NISM	R	9.0	9.4	13/16	65		3	. <u>.</u>
Patula Niga	R	9.5	9.2	11/16	53		3	
7	、							
					358	2.69		
			·).	12.7	145	*		
				6.35	107			· · · ·
				12.2	125			
		· · · · ·		12.7	135	·	1	
·····					366	2.54		
<u></u>					292	2.02		
				24,2	·1· ·			
		÷		22.2	1			
······································				-	279	1.9		
			· ·····	14.2	155			* ***
an a	-			19	193			······
				17	178			
	<u> </u>			19	147		<u> </u>	· · · · · · · · · · · · · · · · · · ·
	-		.	20	145		<u> </u>	
	_			17	135			
			<u> </u>					ń
Source: <u>C</u> ultivated, <u>T</u> ransplan <u>B</u> all and Burlap, <u>P</u> e	t, Live stake,		I Vigor: <u>4</u> ≕e	kxcellent, <u>3</u> =g	1 good, <u>2</u> =weak,	1=unlikely to s 0=Dez] urvivė year, id, <u>M</u> issing.	•

©2006 Carolina Vegetation Survey.

Form PWS12, ver 6.3

Natural Woody Stem Data: CVS Levels 2 & 3

		1						<u>VSLev</u>						,		<u> </u>	<u> </u>
Leader: りんり Height Cut-Off for Stems (all ster	Proje	<u>et: 1</u>	HICRK	<u>Team: ว</u>	<u>SL</u> Plot:		<u>D</u>	<u>ate: 9 / 2</u>	17/06	2	<u>Ares</u>	(=100n	1 ²):			Page	<u>3 of 3</u>
Height Cut-Off for Stems (all ster	ns shorte								cm			bunc		DTT			
		DEE	<u> </u>	- HEIGHT	1	2	APLINGS -	- DRH		1		REES	<u></u>		1		
Species Name	Z	Sub-	10 cm-	50 cm-	100 cm-	Sub-	0.1	105		5	10	1.5	20	25	20	25	≥40
] Mod*	Seed	50 cm	100 cm	137 cm	Sapl	0-1 cm	1-2.5 cm	2.5-	5-	10-	15-	20-	20-	30-	33-	(write dbh)
Diospyros (Resimm) Liciadedron Tulipfire Acer Negando Bahila Nigra				• Ø				·					* .				
Unidedon Tulipfing			\$ /		4	—					· ·						
Ader Nesando				•	•	—											
Bohila Nigra			۶ ۲	XI.		<u> </u>											
		: 															
						·											
		<u> </u>										ļ					
		<u> </u>											 				
																<u> </u>	
					- - -							<u> </u>					
х																	
· .																	
												<u> </u>	<u> </u>				
																	<u> </u>
©2006 Carolina Vegetation Survey.	*Moo	lule is f	or Sampling Le	vel 3.	• 1	• 2		• 4 ••• • •	5 6	●● 7	8	14	9	10	Fo	ərm NW	/S23, ver 6.2

page 1 of 1

GENERAL INFORM	IATION	LOCATION	PLOT DIAGRAM Fill in ONE of the templates below, using the key to draw GPS location, photos and posts. Edit shape if
Project Label:		General: Strengerach Rd /5-I-40	plot doesn't match one of the templates. Draw any landmarks, such as streams, banks, fences, etc.
Project Name: Lyle (celic	State: NC County: Catanty	Standard 10m x 10m (14.142m diagonal): Non-standard 5m x 20m (20.616m diagonal): ●Posts (x,y) Key Y-axis YA
<u>Team</u> : 556		Quadrangle:	
Plot: New #4			(o, lo) \bigcirc GPS location point
Level 1 (planted stems only Level 2 (planted and natura		Place Names: 1)	$\begin{array}{c c} \underline{\text{Bearing of}} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Start Date: 9 / 2' e.g.: JAN / 15		2) 3)	X-Axis: (lO, O) (lO, O) $(35 \circ$ $(0, 0)$
End Date (if different): /		Land Owner:	
Party	Role**	$\bigotimes \frac{\text{GPS Receiver Location}}{x^{=}} \stackrel{\text{(m):}}{=}$	Plot Size (ares, default=1): O-> Photo (An "are" is 100 m ²) Identifier(s):
	<u>Plot</u>	Datum: UTM Zone:	NOTES If more space is needed, check the box and use back of datasheets.
	Leader	NAD83/WGS84 🗆 NAD27 if UTMs used	Layout: (anything unusual about plot layout and shape)
K Mulliney	Corlead	Lat: (or UTM-N) decimal deg. meters	N CT
		e.g. 35.16623 e.g. 3962248	100
		Long: (or UTM-E)	
		e.g. e.g. -[25.]24]3 710524	l t ∽
		Coordinate Accuracy (m radius):	Plot Location: (directions to plot, landscape content)
		e.g. 30	of the fill of shores
	_	GPS File Name:	SW Corner 30 ft off Left Bank of Streen at Triph Banched Ever Brech Approximiting 100 FF south of (Plot 3 old) Plot Rationale: (why location was chosen for the plot)
**Roles: Co-leader, Assis Land owner, Taxon			at Turk barhad for Brech
Soil Drainage	*	SITE CHARACTERISTICS	Anomything In It with it (Plot 3 old)
□ Excessively drained		Elevation: \pm \Box^m	Plot Rationale: (why location was chosen for the plot)
Somewhat excessivel	y drained	Slope (deg):	
 Well drained Moderately well drain 	- ad	Aspect (deg):	Random celestron
□ Somewhat poorly dra		Compass Type: □ magnetic □ true	1 SUMM STATES
□ Poorly drained		Plot Placement	
□ Very poorly drained		□ Representative	Other Notes: (invasive species, erosion, disturbances, etc.)
WATER		✓ Random Further details	
Percent of Plot Submer	ged: / %	Transact component can be men-	
Mean Water Depth: 7	× 70	□ Transect component tioned in Plot □ Systematic (grid) Rationale.	
) cm	□ Capture specific feature	
		USED FOR PLANT IDENTIFICATION	
Authority: \	idfuld	, <u>Publ. Date</u> :	🗆 morei

Required Fields in Bold and Underlined. *Definitions and/or values are in the Definitions section of the CVS Field Guide.

ź

©2006 Carolina Vegetation Survey. Form PLT12, ver 6.2

P	lanted	Woody	Stem D	ata: CV	VS Leve	ls 1 & 2		
Leader: Bry PI	<u>oject</u> : K	Ulfream:	<u>JJ6 pi</u>	<u>ot:</u>	<u>Date</u> : <u>1</u>	7 1271	66	Page Lof 2
Species Name	Source	<u>Coordi</u>	<u>nates</u>	ddh	<u>Height</u>	DBH	Vigor	Damage
	<u>Source</u>	X (m)	Y (m)	(mm)		(cm)		Dumago
Fraxing from		0,70	1.1	14/16	92		3	
Frazins Ra		0.70	7.1	14/16	112		4	
Nysta Aquitica		3.6	7.9	7/16	55		3	
Befula Niga		4.D	4,9	7/16	5.4		3	
Berly Nyera		5,0	0.2	12/16	130		4	
				22.12	234			
			·····	22.2	285			
<u></u>				11	7,40			
BAWW					138			
<u> </u>				19	330			
			L	<u> </u>				
••••••••••••••••••••••••••••••••••••••								
u		ъ.						
· · · · · · · · · · · · · · · · · · ·								
		· · · · · · · · · · · · · · · · · · ·						
							· ·	
····								
		u,						
		•						
								······································
							1	
			<u>.</u>				٤	
Source: <u>C</u> ultivated, <u>T</u> ransplant, <u>B</u> all and Burlap, <u>P</u> ot	⊥ <u>L</u> ive stake, Bare Root		Vigor: <u>4</u> =e	∎ xcellent, <u>3</u> =g	l ood, <u>2</u> =weak, _	1=unlikely to s 0=Dea	urvive year, ad, <u>M</u> issing.	\downarrow
	Damage: <u>R</u>	emioval, <u>Cut, Mo</u> r	wing, <u>Beav</u> er, <u>I</u>	Deer, Rodents,	Insects, Game,	Livestock, Othe	r/Unknown Ar	nimal, Human <u>Tram</u> plec
©2006 Carolina Vegetation Survey.	Si	te Too <u>Wet</u> , Site T	loo <u>Dry</u> , <u>Flood</u>	, <u>Droug</u> ht, <u>St</u>	orm, <u>Hurr</u> icane	, <u>Dis</u> eased, <u>Vine</u>	Strangulation,	Unknown, specify other Form PWS12, ver 6.

Planted Woody Stem Data: CVS Levels 1 & 2

7

Ţ

.

				INA	tural w	<u>ooay s</u>	tem	Data: (JVS Lev	eis 2 c	<u>x s</u>							
Leader: hwy	<u>P</u>	rojec	<u>t: l</u>	ylectic	<u>Team</u> : <u></u>	<u>) Plot</u> :	4	<u><u>D</u></u>	<u>nte: 9 / -</u>	77/06	<u>, </u>	<u>Ares</u>	(=100n	1 ²):	<u> -</u>		Page	3_of <u>></u>
Height Cut-Off for Stems (all s	stems	shorte	r than th	his height are ig	nored and not t	allied): 🗆 10	cm □	50cm □ 10	$\frac{137}{137}$	cm		~	In m	T 1	DTT			
			SEE	DLINGS —		<u> </u>	<u> </u>	APLINGS –	– DRH		1	1	REES	— Di	<u>BH</u>		-	
Species Name	J		Sub-	10 cm-	50 cm-	100 cm-	Sub-				_							≥40
	с	Mod*	Seed	50 cm	100 cm	137 cm	Sapl	0-1 cm	1-2.5 cm	2.5-	5-	10-	15-	20-	25-	30-	35-	(write dbh)
Diosnyas nis					•													
Arer Neuros						*												
Diospyras mig Ace Negral Viriodentron Julipter				0 6 •	9	9			i .									
				-														
·			<u> </u>															
						· · · ·												
						1												
						-												
and the second se																		
· · · ··· -																		
								·····				:						
<u>, , , , , , , , , , , , , , , , , , , </u>			<u> </u>				<u> </u>											
			 															
											· · · ·			ĺ				
					ł													
				<u> </u>		 I					·							
			<u> </u>															<u>.</u>
			<u> </u>				—					<u> </u>						
<u>,</u>																		
©2006 Carolina Vegetation Survey.	<u> </u>	*Mod	lule is fo	or Sampling Le	vel 3.	• 1	• 2	• 3 •	• 4 ••• 4	5 6	7	8	11	9 🔀	10	Fo	rm NW	S23, ver 6.2
						I	-		• (••		1 		(• .•		r			

4

Natural Woody Stem Data: CVS Levels 2 & 3

.

page 1 of 1

en en N

			a: CVS Levels 1 & 2
General Infor	MATION	LOCATION	PLOT DIAGRAM Fill in ONE of the templates below, using the key to draw GPS location, photos and posts. Edit shape if
Project Label:		General: Staglogch Rd /S-I-M	plot doesn't match one of the templates. Draw any landmarks, such as streams, banks, fences, etc.
Project Name: Cyle	Cak	State: NC County: Colomba	Standard 10m x 10m Non-standard 5m x 20m Posts Key (14.142m diagonal): (20.616m diagonal): (x,y) (x,y)
Team: 576		Quadrangle:	Y-axis = Y = Y = Y = Y = Y = Y = Y = Y = Y =
Plot: Mw # 5 □ Level 1 (planted stems on	lv)	Place Names: 1)	$\underline{\text{Bearing of}}$
Evel 2 (planted and natur	ral stems)	2) 3)	$\begin{array}{c c} \hline \hline \\ $
Start Date: 9 / 2 e.g.: JAN / 1:	5 / 2006	Land Owner:	$100 \circ$ posts
End Date (if different):		GPS Receiver Location (m):	Plot Size (ares, default=1):
Party	Role**	$\bigotimes \frac{GFS}{x=} \frac{Cocation}{y=} (m).$	(An "are" is 100 m ²) Identifier(s): NOTES
Ben Fox	<u>Plot</u> Leader	Datum: UTM Zone: if UTMs used	If more space is needed, check the box and use back of datasheets. Layout: (anything unusual about plot layout and shape)
Stephen Bully	Contend	Lat: (or UTM-N decimal deg. meter e.g. 35.16623 e.g. 3962244	
······································		Long: (or UTM-E. e.g. e.g -125.12413 710524	
		Coordinate Accuracy (m radius): e.g. 30	Plot Location: (directions to plot, landscape content)
**Roles: Co-leader, Ass Land owner, Taxo		GPS File Name: Lyle CRK - New #	Left Prodphan approximately 150 fd Southurst of all plat 2
Soil Drainag	ge*	SITE CHARACTERISTICS Elevation: <u>±</u> t	Plot Rationale: (why location was chosen for the plot)
□ Somewhat excessive		Slope (deg): 0-10	The Radonale. (why location was chosen for the plot)
 Well drained Moderately well dra 		Aspect (deg):	Random Selection for new plots
 Somewhat poorly dr Poorly drained 	rained	Compass Type: ragnetic bytrue Plot Placement	- GULAN SALVANT LAL VAN AL DE MOL
□ Very poorly drained	l	Representative	Other Notes: (invasive species, erosion, disturbances, etc.)
WATER Percent of Plot Subme	erged:	Erther details □ Stratified random □ Transect component □ Sustematic (grid)	Maltoflara rose, rubus argutas
Mean Water Depth:	0cm	□ Systematic (grid) Rationale. □ Capture specific feature	
TAXONOMIC ST Authority: (-0)		USED FOR PLANT IDENTIFICATION , Publ. Date:	🗆 more
Required Fields in Bold an			tion of the CVS Bield Guide

Required Fields in Bold and Underlined. *Definitions and/or values are in the Definitions section of the CVS Field Guide.

v

©2006 Carolina Vegetation Survey. Form PLT12, ver 6.2

eader: Be for P								
	roject: <u>W</u>	eAL Team:	<u>556 PI</u>	ot:New#	<u>5 Date: </u>	7 1261	06	Page 2 of 1
<u>Species Name</u>	Source	<u>Coordi</u>	<u>nates</u>	ddh	Height	DBH	<u>Vigor</u>	Damage
	Source	X (m)	Y (m)	mm)	(an)in	(cm)in		Damage
Platures occ		0,0	Dila	5/16	58		3	
Platmus occ		0.8	2,3	10/16	72		3	
Befuls NISPA		0.6	4.5	1/16	71		3	
Betilenina		0,6	7.1	9/16	67		3	
Fraxins penn		0.0	10.0		120	9/16	4	
Nyssa aqueta		2.1	10,0	8/16	45		3	
giorns lyrite		2,5	5.4		//3	14/14	4	······
Betuls Niga		7.9	15	7/14	44		3	
Betwik Nige		4.9	7.4	1/16	81		3	
Behla Nisa		5,0	8,7	\$7.57	102	9/16	4	
Behila Myra		7.5	9.0	14/16	93		3	
Betil. mar		6.0	7,3	14/16	185		3	
Befula wara		8.0	5.4	10/16	79		3	
Behele Nige		10,0	0.5	9/16	82		3	
		////			<u>د ب</u>			
·····								
	+ +							. <u></u>
	<u> </u>							
		- 1-7 - 1						
•								
·····								
		,						
·								
·····								
Source: <u>C</u> ultivated, <u>T</u> ransplant, <u>B</u> all and Burlap, <u>P</u> o		· · · · · · · · · · · · · · · · · · ·	Vigor: <u>4</u> =e	xcellent, <u>3</u> =g	ood, <u>2</u> =weak, <u>1</u>	l=unlikely to su 0=Dea	ı ırvive year, d, <u>M</u> issing.	4
	Damage: R	moval, Cut, Mov	ving, <u>Beav</u> er, <u>L</u>	Deer, Rodents,	Insects, Game,	Livestock, Other	/Unknown A	<u>aim</u> al, Human <u>Tram</u> pl

Planted Woody Stem Data: CVS Levels 1 & 2

۲

©2006 Carolina Vegetation Survey.

Form PWS12, ver 6.3

Leader: B Fay	P	rojec	<u>t:</u> ム	leax	Team: J	<u>Jb</u> <u>Plot</u> :	Nev	1 # 5 <u>D</u>	ate: 9 /2	8106		Ares	(=100n	1²):	4		Page	3 of 3
Height Cut-Off for Stems (all	stems	shorte			nored and not t - HEIGHT			APLINGS -		cm		г	FREES		RH			
				10 cm-	50 cm-			ALDINGS			[REES					> 10
Species <u>Name</u>	С С	Mod*	Sub- Seed	50 cm	100 cm	137 cm		0-1 cm	1-2.5 cm	2.5-	5-	10-	15-	20-	25-	30-	35-	≥40 (write dbh)
Betula Wig Ta Liquidantersh Cornus comm.			******	X	⊠	9												
Liquidanterob			·	80														
Cornus anon.				8 9	•		<u> </u>											
Julie Pipher Alous Ser.				• *														
Alous ser.				¢:	. <u>.</u>													
Querry Falcata		J.			P													
																	•	
							—											
							<u> </u>											
				·			<u> </u>											
							<u> </u>											
				· · · · ·														
©2006 Carolina Vegetation Survey.		*Mod	ule is fo	or Sampling Lev	vel 3.	• 1	• 2	$\begin{array}{c c}\bullet & 3\\\bullet\bullet & \end{array}$	• 4 •••	5 6	● 7 ● ●	8	12	9	10	Fo	rın NW	/S23, ver 6.2

· .

h

÷,

Natural Woody Stem Data: CVS Levels 2 & 3

GENERAL INFORM	MATION	LOCATION	PLOT DIAGRAM Fill in ONE of the templates below, using the key to draw GPS location, photos and posts. Edit shape if
Project Label:		General: Styceauch Rel S-Ing	plot doesn't match one of the templates. Draw any landmarks, such as streams, banks, fences, etc.
Project Name: Whe	CRK	State: NC County: Catants	Standard 10m x 10m Non-standard 5m x 20m (14.142m diagonal): (20.616m diagonal): (x,y) Key
Team: JJL			Y-axis Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Plot: New Hb		Quadrangle:	$\frac{(O, O)}{(O, O)} \bigotimes_{\substack{(O, O) \\ \text{opint}}} GPS \text{ location}$
□ Level 1 (planted stems on □ Level 2 (planted and natur		Place Names: 1)	$\begin{array}{c c} \underline{\text{Bearing of}} \\ \hline \\ \hline \\ \hline \\$
Start Date: 9 / 2 e.g.: JAN / 15	8 1 06 5 1 2006	2) 3)	\overline{X} -Axis: $\overline{(lo, 0)}$ \overline{X} -Axis: $\overline{(lo, 0)}$
End Date (if different):	1 1	Land Owner:	
Party	Role**	$\bigotimes \frac{GPS}{x^{=}} \frac{\text{Receiver } Location}{y^{=}} $ (m):	Plot Size (ares, default=1): Photo (An "are" is 100 m ²) Identifier(s):
Bertoy	<u>Plot</u> Leader	Datum: UTM Zone: if UTMs used	NOTES If more space is needed, check the box and use back of datasheets.
Ofigher buildy	Co-led	Lat: (or UTM-N) decimal deg. meters e.g. 35.16623 e.g. 3962248	Layout: (anything unusual about plot layout and shape)
		Long: (or UTM-E) e.g. c.g.	10m
		-125.12413 710524	
		<u>Coordinate</u> <u>Accuracy</u> (m radius): e.g. 30	Plot Location: (directions to plot, landscape content)
		GPS File Name:	left buck & mid of fishers Reach Approximitely 28-35 from Rale
**Roles: Co-leader, Ass Land owner, Taxo		GPS File Name:	A cardenable 25-35 A Sam K. Ir
Soil Drainag	,	SITE CHARACTERISTICS	prover 21 35 17 the mart
□ Excessively drained	-	Elevation: \pm \Box^m	Plot Rationale: (why location was chosen for the plot)
□ Somewhat excessive	ely drained	Slope (deg):	
 Well drained Moderately well dra 	ined	Aspect (deg):	Radin selection for numplot
□ Somewhat poorly dr		Compass Type: 🗆 magnetic 🕁 fue	
 Poorly drained Very poorly drained 		Plot Placement	
WATER		□ Representative □ Random Further details	Other Notes: (invasive species, erosion, disturbances, etc.)
Percent of Plot Subme	Ψ-	□ Stratified random of placement can be men-	O) (control
Mean Water Depth:	$\tilde{0}_{\rm cm}$	□ Transect component □ Systematic (grid) □ Capture specific feature	Rubus argutas.
TAXONOMIC ST		USED FOR PLANT IDENTIFICATION	
Authority: (0	7619	, <u>Publ.</u> Date:	

Required Fields in Bold and Underlined. *Definitions and/or values are in the Definitions section of the CVS Field Guide.

j,

. 1

©2006 Carolina Vegetation Survey. Form PLT12, ver 6.2

ader: <u>BF3y</u> P	roject: Ly	le alle <u>Team</u> :	<u>776 PI</u>	lot: New #	6 Date: 2	1281	٩,6	Page Z of 3
Species Name	Source	Coordi	•	ddh	<u>Height</u>	DBH	Vigor	Damage
		X (m)	Y (m)	(mm) _{in}		(cm)/-		
Outula Nora		0.8	4.6	9/16	83		7 3	
Platins oce		0.8	1.0	4/16	40		3	
Photomy occ		1.6	3,6	14/16	89 97		3	
Platans UCC		2,2	5.0	10/16			<u>↓ </u>	
Plans Du		2,2	7,4	13/16	110	1411.	4	
Platzons oc		3,2	0.8	14 1.1	123	14/16	7 3	
Betwhen Migra		4.2	1.9	14/16	89	1 12 1	3 4	
Localing peo		4.5	3.8		140	1/16	<u> </u>	
Bethila Nigra		4.0	8,6	15/16	87_		3	
Beals Nogth		2.6	9.2	16/10	90	d l x	3	
Platan's occ		3.0	9.0		97	\$/16	4	
Platans 0C		4.5	7.4		106	10/16	'4 k	
Saliv Mga	_	5,5	6.2	15/16	138			
befula Nigra	_	5.8	2.9	1	106	1/16	4	
Plana-JECC		6,5	1.6	12/16	71	-	3	
Platanis oce		6.7	4.0	-	71	7/16	4	
Benda Nicia		7,4	7,3	7/16	52		3	
Plahasoc.		7.4	4.9	9/,6	55,		3	
Paper viero		5.4	7.1	1/16	68		3	
Saliv mgs		9.0	0.0		136	12/16	4	
0								· · · · · · · · · · · · · · · · · · ·
				-				
				1				
				1				
	_		<u> </u>					
						· ·		
·	-							
Source: <u>C</u> ultivated, <u>Transplan</u> <u>B</u> all and Burlap, <u>P</u> c			Vigor: <u>4</u> =e	xcellent, <u>3</u> =g	1. 3000, <u>2</u> =weak,	<u>t</u> =unlikely to s <u>0</u> =Dea	⊣ urvive year, ad, <u>M</u> issing.	Ļ

Leader: 12 Fox	Pro	ject	: 6	recer	<u>Team: 55</u>	Plot:	News	#6 <u>D</u>	ate: 9 / 2	28/06	,	Ares	(=100m	1²):			Page	3 of 2
Height Cut-Off for Stems (all st	ems sh									cm								
		ŀ	SEE		- HEIGHT		5	APLINGS -	– DRH			1	REES	•				
<u>Species Name</u>	С с м	od*	Sub- Seed	10 cm- 50 cm	50 cm- 100 cm	100 cm- 137 cm	Sub- Sapl	0-1 cm	1-2.5 cm	2.5-	5-	10-	15-	20-	25-	30-	35-	≥40 (write dbh)
Lirodedon Thipfer				9	al de	* ; •												
Linodedon Thiliphr Aar Ruburn		Î		90	11	ų ,	1											
Ulars aluta					• •	4												
Platmis oc.				X	17. 12	7	·											
- Ulars ametrica				• •	* •													
Populas deltates					0													
Swoth grac Detter Nigra					8													·
Dolla Myra					¥													
· · · · · · · · · · · · · · · · · · ·	_	_					—											
		_																
							—											
	_																	
	_								· · · ·	- <u>.</u>								
		_																
	-																	
/ (m			_															.
· · ·		-				-												
		-						· · · · · · · · · · · · · · · · · · ·										
			_						-									
														1	1			<u></u>
								1							1			
©2006 Carolina Vegetation Survey.	 *1	Modu	le is fo	r Sampling Lev	vel 3.	• 1	2 <u> </u>		• 4 ••• 3	5 •• 6	7	8	11	9	10	Fc	orm NW	/S23, ver 6.2

۴

Natural Woody Stem Data: CVS Levels 2 & 3

GENERAL INFORMATION	LOCATION	PLOT DIAGRAM Fill in <i>ONE</i> of the templates below, using the key to draw GPS location, photos and posts. Edit shape if
Project Label:	General: Proyconch Rd - Stins	plot doesn't match one of the templates. Draw any landmarks, such as streams, banks, fences, etc.
Project Name: Lyle Cer	State: NC County: Costawby	Standard 10m x 10mNon-standard 5m x 20m $\bullet Posts$ Key(14.142m diagonal):(20.616m diagonal): (x,y)
<u>Team</u> : 556	Quadrangle:	Y-axis Y
Plot: Now # 17		$(\mathcal{O}, \mathcal{O})$ (GPS location
□ Level 1 (planted stems only) □ Level 2 (planted and natural stems)	Place Names: 1)	Bearing of (O, 10) point
Start Date: 9 / 29 / 06	2) 3)	$\frac{\text{Plot}}{X-\text{Axis:}} \qquad $
e.g.: JAN / 15 / 2006	Land Owner:	<u>78</u> ° (,) ● posts
End Date (if different): / /	GPS Receiver Location (m):	Plot Size (ares, default=1):
Party Role**	$\bigotimes \frac{GPS}{x=} \frac{Receiver Location}{y=} $ (m):	(An "are" is 100 m ²) Identifier(s):
B Fay Plot Leader	Datum: UTM Zone:	NOTES If more space is needed, check the box and use back of datasheets.
	TAD83/WGS84 🗆 NAD27 if UTMs used	Layout: (anything unusual about plot layout and shape)
Septer Bailey Cortend	Lat: (or UTM-N) decimal deg. meters	r-1
· · · · · · · · · · · · · · · · · · ·	e.g. 35.16623 e.g. 3962248	A lon
	$\underbrace{\text{Long:}}_{\text{e.g.}} \underbrace{\text{(or } \underline{\text{UTM-E}})}_{\text{e.g.}}$	
	-125.12413 710524	Plot Location: (directions to plot, landscape content)
	Coordinate Accuracy (m radius): e.g. 30	Plot Location. (directions to plot, landscape content)
	GPS File Name:	36 ft from end of Restard Reach
**Roles: Co-leader, Assistant, Guide, Land owner, Taxonomist, Other		
Soil Drainage*	SITE CHARACTERISTICS	on fight brench
□ Excessively drained		Plot Rationale: (why location was chosen for the plot)
□ Somewhat excessively drained □ Well drained	Slope (deg):	
Development Moderately well drained	Aspect (deg): Compass Type: □ magnetic	Kanton Selection for new plats
 Somewhat poorly drained Poorly drained 	Plot Placement	nore
□ Very poorly drained	□ Bepresentative	Other Notes: (invasive species, erosion, disturbances, etc.)
WATER	Random Further details	
Percent of Plot Submerged:	□ Stratified random □ Transect component can be men- tioned in Plot	Microsteger Viry / fulfuls arguitus
Mean Water Depth: 6	□ Systematic (grid) Rationale.	1 in a first allows
	Capture specific feature USED FOR PLANT IDENTIFICATION	
Authority: 69ch/c	, Publ. Date:	more

Required Fields in Bold and Underlined. *Definitions and/or values are in the Definitions section of the CVS Field Guide.

1

1

©2006 Carolina Vegetation Survey. Form PLT12, ver 6.2

P	lanted	Woody	Stem D	ata: C	VS Leve	ls 1 & 2		
		le can Team:					06	Page 2 of 3
Species Name	Source	<u>Coordi</u>		ddh	Height	DBH	<u>Vigor</u>	Damage
		X (m)	Y (m)	(mm)	(CM)	(cm)/~		
Har Ribrin	\mathcal{C}	1.2	2.3	5/16	43		2	Dur/ijas
Hur Rhur	$\left - \right $	1.7	4,7	5/16	37	-,	2	Deerlins
R 11 R 11	$\left \right $	1.7	7,8	7/16	54		2	partins
Betula Nigra		2.0	7.2	5/16	ЧГ		2	Deer ms
Myssa agraba		2.5	1.7	8/16	48		3	
Platanus occ.	$\left - \right $	3.5	<i>8.9</i>	4/16	39		2	Dees/Mas
Jaliy night	$\left \right $	3.8	9.8	5/10	<u>52</u> 47		3	Ductors
Behrlis ne gra		<u> </u>	9.4	6/16			2	per/ms
Are Robrom		5.5	9.8	3/16	26			Der/12
Befula rigita		5.7	8,0	W16	<u>43</u>		2	Deerfms
But la riger		5.7	5.0	3/,6	36 42		2	.10
Selvin nigh		6,0	1,0	4/16	94 94	5/16	2	NS Dees / Uns
A.A.I	$\left - \right $	6.0	1.6	4/,6		716		Deer /m
Bifil: Nigoz		6,5 7.6	2.2	116	<u>37</u> 499		2	
Platenes DCC		7.0	2,8	5/12	9 1 28		2	Der /m
BANK NILG		<i>S.</i> U	9.0	SIL	<u> </u>		2	1101
Acer Morm	C	10,0		5/16	43		3	
- Harlebow,	LS	10.0	Ç.0 1,0	9/16	76		3	
Sali V Aiga		10.0	170	//6	10		<u> </u>	
······								
· ·		·····						
······································	·							
			!	[
*			! !					
	· · · · · · · · · · · · · · · · · · ·	····			·····			
								
						<u></u>		
· · ·								
······································								
			·····			••••••••••••••••••••••••••••••••••••••		
Source: <u>C</u> ultivated, <u>T</u> ransplant, Ball and Burlap, Pot,			Vigor: <u>4</u> =e:	i kcellent, <u>3</u> =g	1 000, <u>2</u> =weak, j	l ∐≕unlikely to su 0=Deac	 rvive year, 1, <u>M</u> issing.	↓
	amage: R	emoval, <u>Cut</u> , <u>Mo</u>	wing, <u>Beav</u> er, <u>E</u>	eer, Rodents,	Insects, Game,	Livestock, Other/	Unknown <u>A</u>	nimat, Human <u>Tram</u> pled,
CO006 Carolina Vagetation Survey	Sit	ie 100 <u>Wet</u> , Site T	oo Dry, Flood	Drought, St	orm, <u>Hurr</u> icane.	, Diseased, Vine S	trangulation	<u>Unknown</u> , specify other.

©2006 Carolina Vegetation Survey.

Form PWS12, ver 6.3

eader: 1767 leight Cut-Off for Stems (4	<u>P</u>	Projec	<u>t: [/</u>	1 CLELC	Team: <u>J</u>		7	<u>D</u>	ate: 1 /	28/06		<u>Ares</u>	(=100n	n²):			Page	<u>}</u> of _
leight Cut-Off for Steins (a			SEE	DLINGS —	- HEIGHT		S.	APLINGS -	– DBH			Γ	REES	— D]	BH			
Species Name	c c	Mod*	Sub- Seed	10 cm- 50 cm	50 cm- 100 cm	100 cm- 137 cm	Sub- Sapl	0-1 cm	1-2.5 cm	2.5-	5-		15-			30-	35-	≥4 (write∢
100 decon				A-2- 0 (7	0												
			·	4 B	X	4												
Repuls NIG2				P														
Aural elm Nyssa agutez Auraban Platmos oca						9												
Ninsie Bactor					87			·										
Arer Ruhren				P #	70													
Plating 1160				Ð	•									1				
····· ··· ··· ·· ·· ··												<u> </u>						
												<u>-</u>						
												·						
										<u></u>			<u>_</u>					
	-																	
									<u> </u>			<u> </u>						
										• .			1					
			<u> </u>					•					ļ					
								•					· · · ·					
																<u> </u>		
<u></u>					 													
			<u> </u>															<u> </u>

\$

+

. .

1. Bank Erosion: Moderate-3/30/06

2. Bank Erosion: Severe-3/30/06

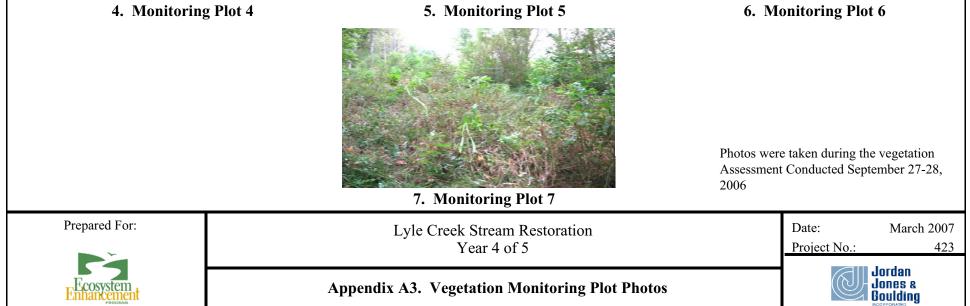
3. Bank Erosion: Moderate-3/30/06

4. Bank Erosion: Severe-3/30/06

Photos taken during the initial assessment conducted in March 20	06		
Prepared For:	Lyle Creek Stream Restoration Year 4 of 5	Date: Project No.:	March 2007 423
Enhancement	Appendix A2. Vegetation Problem Area Photos	((N))	Jordan Jones & Goulding

1. Monitoring Plot 1

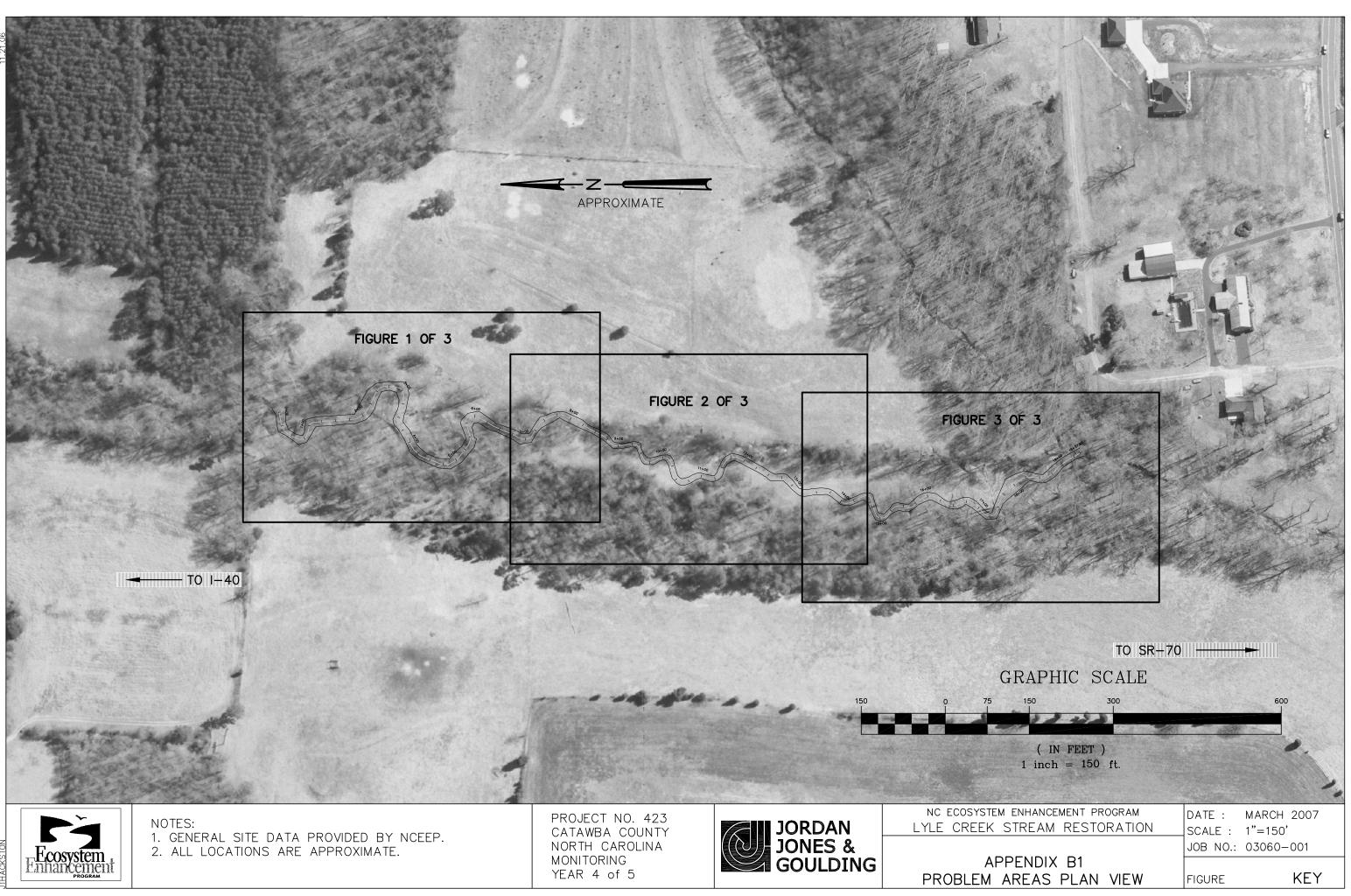
2. Monitoring Plot 2

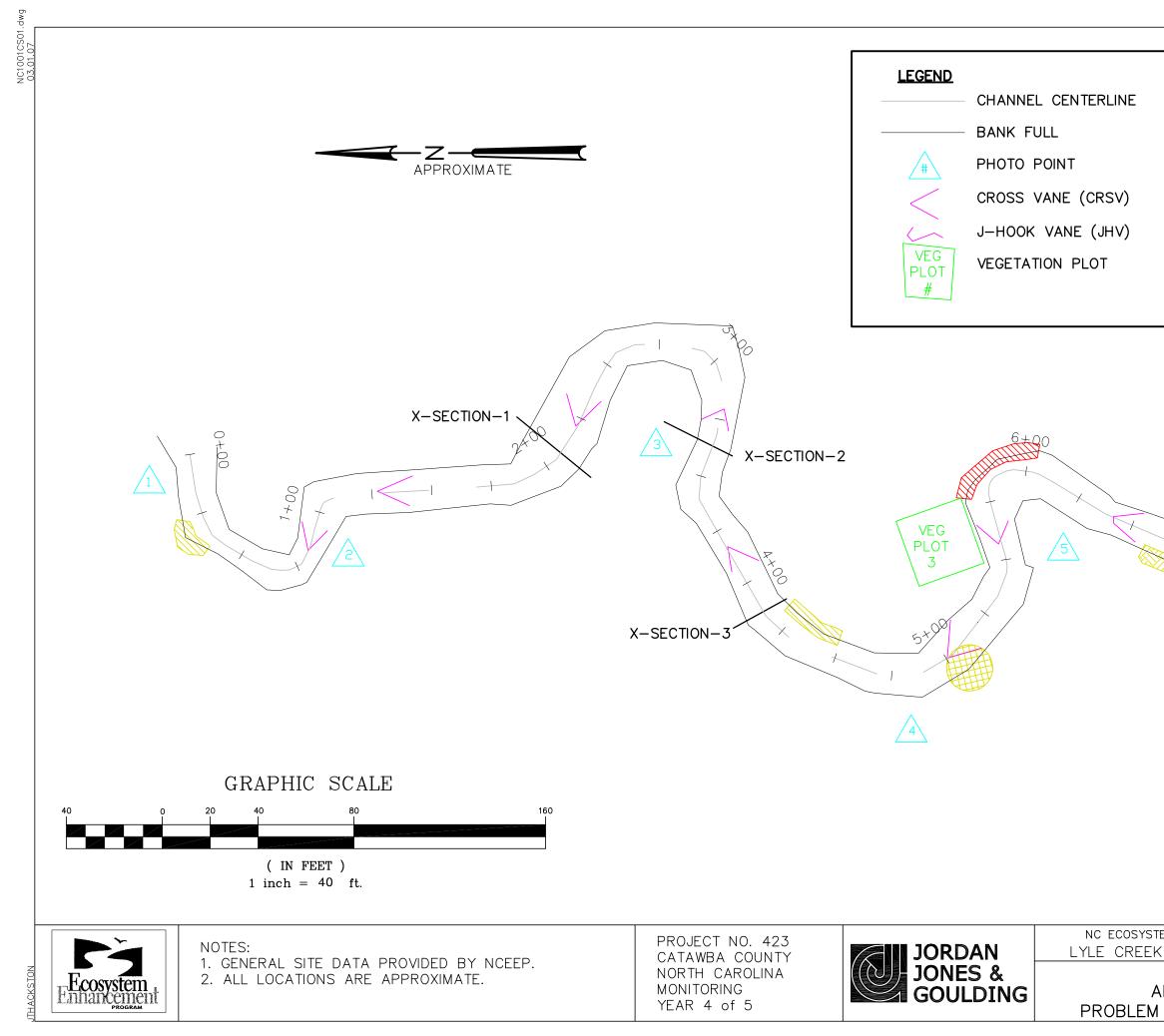

3. Monitoring Plot 3

5. Monitoring Plot 5

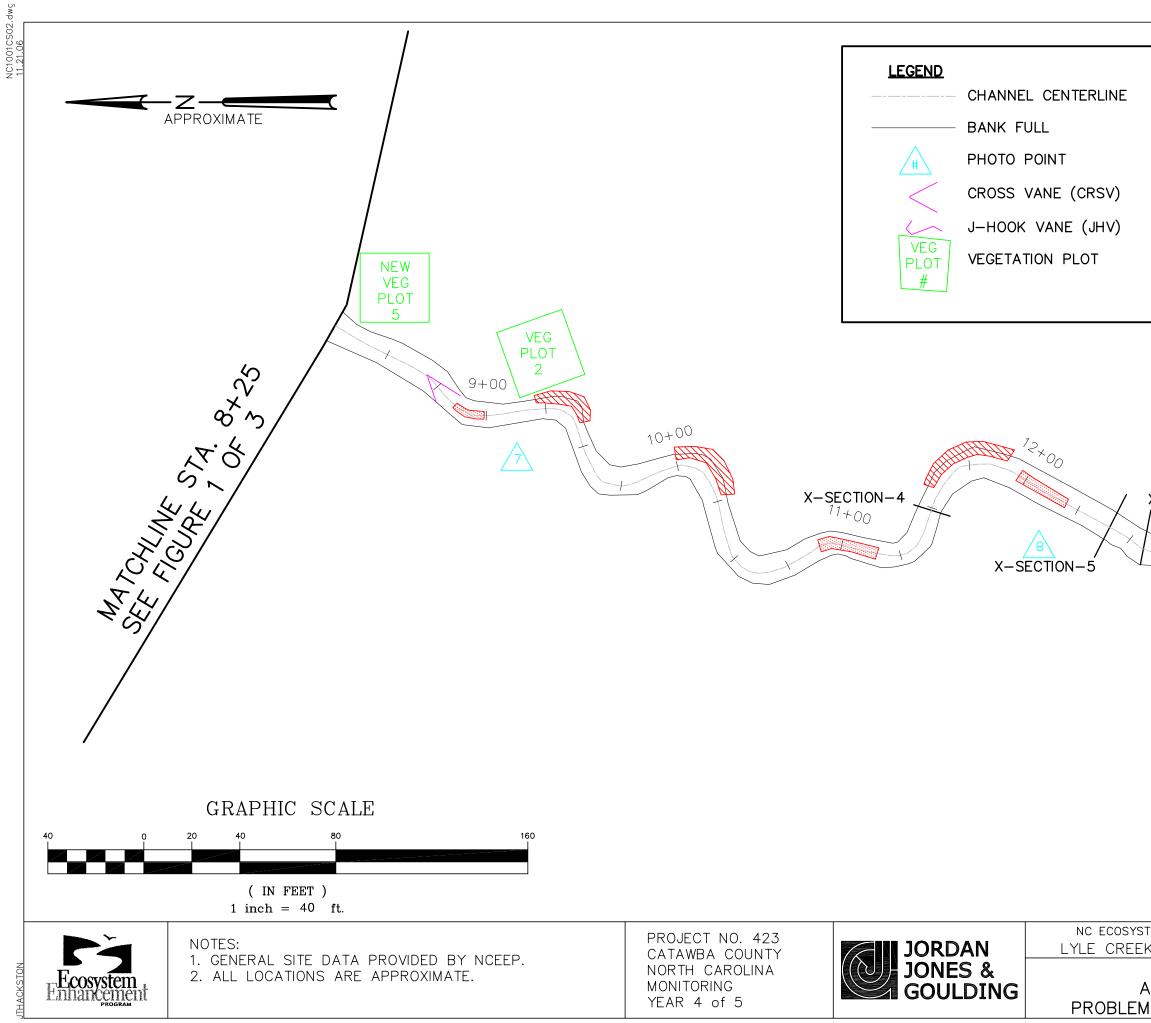
6. Monitoring Plot 6

Appendix B (Click here)

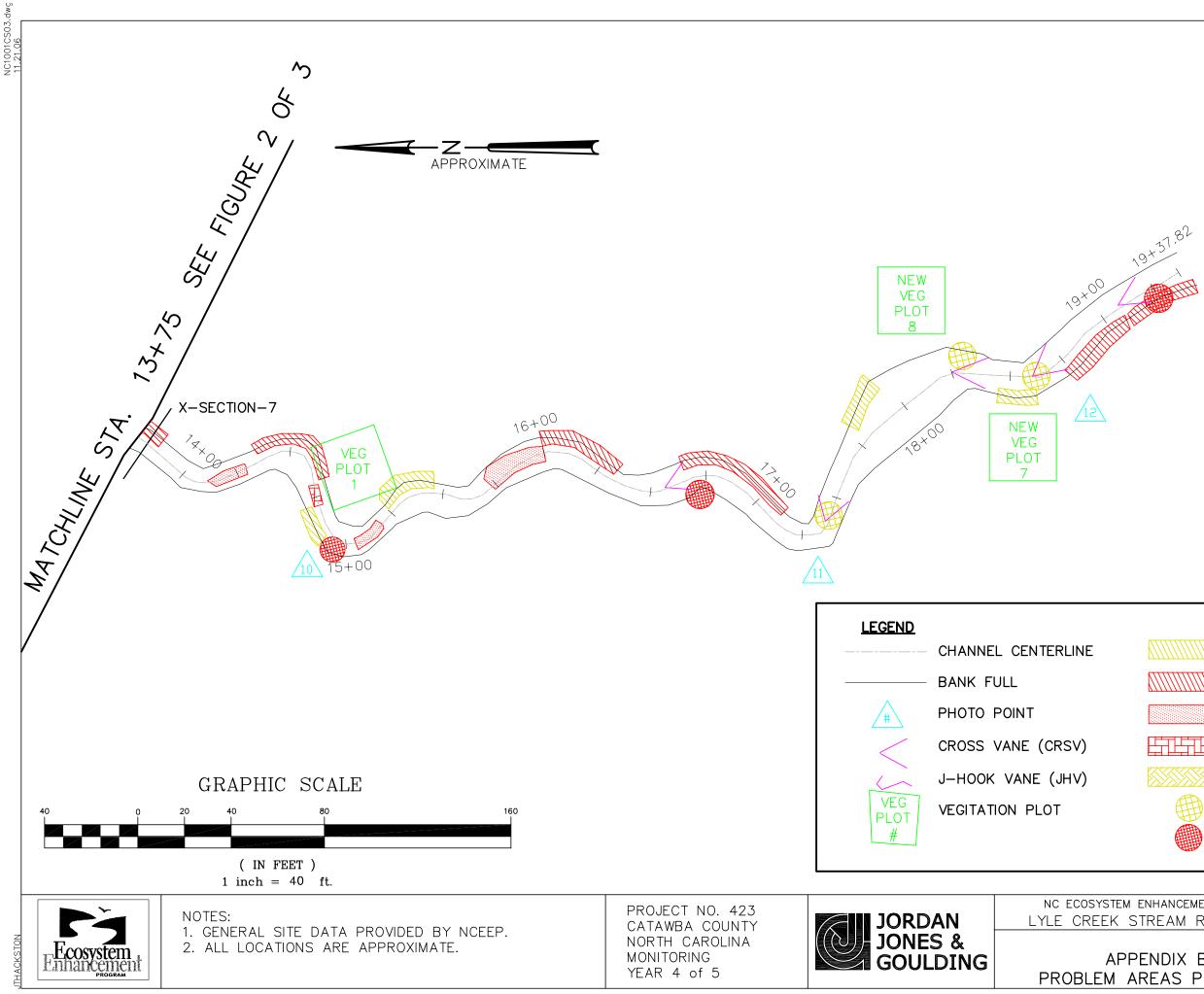

APPENDIX B


Geomorphic and Stream Stability Data

Problem Area Plan View
 Representative Stream Problem Area Photos


 Stream Photo Station Photos
 Qualitative Visual Stability Assessment
 Cross-section Plots and Raw Data Tables*
 Longitudinal Plots and Raw Data Tables*

*Raw data tables have been provided electronically.



	Σ
BANK EROS DOWNCUT/L	IEL BAR AR - STRESSED
NEW VEG PLOT 4 7+00 6	
EM ENHANCEMENT PROGRAM	DATE : MARCH 2007 SCALE : 1"=40' JOB NO.: 03060-001
APPENDIX B1 AREAS PLAN VIEW	FIGURE 1 OF 3

			D AM
	BANK ERG DOWNCUT MID-CHAN LATERAL STRUCTUR	DSION – MO DSION – SE /LOST RIFFL NNEL BAR BAR RE – STRES RE – FAILED	VERE CONTINUENCE C
X-SECTION-6		SEF ICHUNE STA	5 × × ×
EM ENHANCEMENT P	ROGRAM	DATE ·	
	ORATION	SCALE :	MARCH 2007 1"=40' 03060-001

	DATE : SCALE :	MARCH 2007 1"=40'		
	JOB NO.:	03060-001		
APPENDIX B2 1 AREAS PLAN VIEW	FIGURE	3 OF 3		

LATERAL BAR STRUCTURE - STRESSED STRUCTURE - FAILED

MID-CHANNEL BAR

DOWNCUT/LOST RIFFLE

BANK EROSION - SEVERE

BANK EROSION - MODERATE

1. Bank Erosion: Moderate-3/30/06

2. Bank Erosion: Severe-3/30/06

Prepared For:	Lyle Creek Stream Restoration	Date:	March 2007
	Year 4 of 5	Project No.:	423
Enhancement	Appendix B2. Representative Stream Problem Area Photos	((V))	Jordan Jones & Goulding

3. Downcut/Lost Riffle-3/30/06

4. Lateral Bar-3/30/06

Prepared For:	Lyle Creek Stream Restoration	Date:	March 2007
	Year 4 of 5	Project No.:	423
Enhancement	Appendix B2. Representative Stream Problem Area Photos	Jordan Jones & Goulding	

5. Mid-Channel Bar-3/30/06

6. Structure failed-3/30/06

Prepared For:	Lyle Creek Stream Restoration	Date:	March 2007
	Year 4 of 5	Project No.:	423
Ecosystem	Appendix B2. Representative Stream Problem Area Photos	Jordan Jones & Boulding	

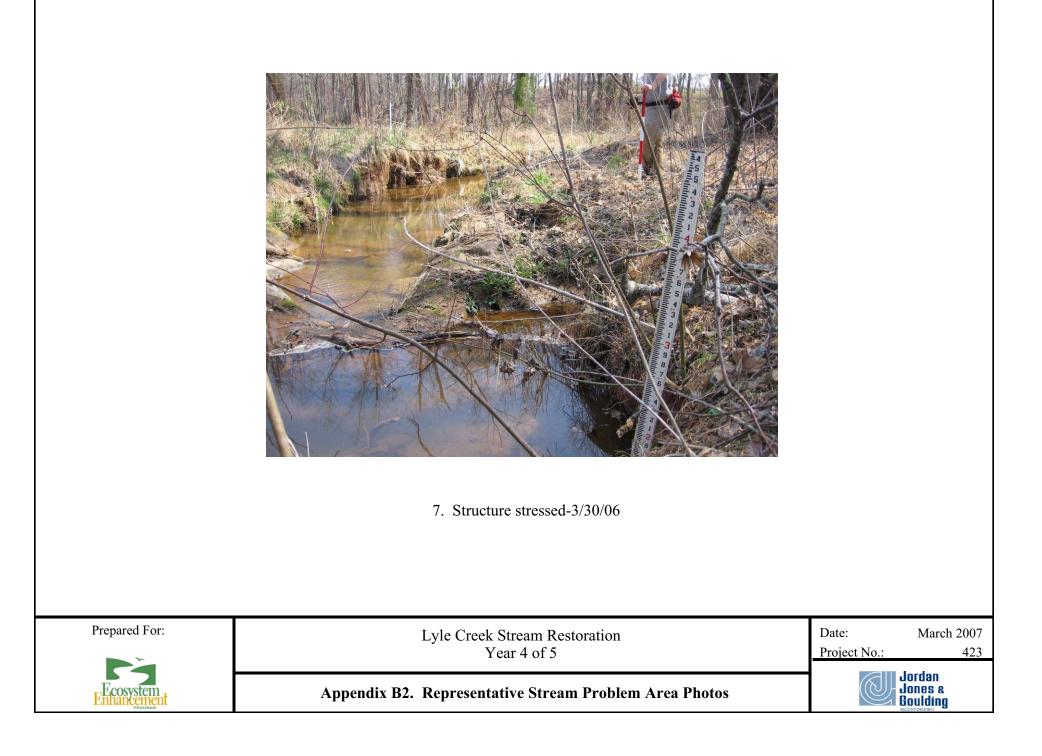


Photo Point 1: Upstream-9/25/06

Photo Point 2: Upstream-9/25/06

Photo Point 1: Downstream-9/25/06

Photo Point 2: Downstream-9/25/06

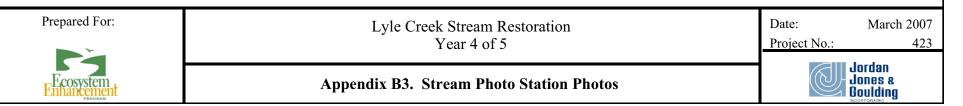


Photo Point 3: Upstream-9/25/06

Photo Point 4: Upstream-9/25/06

Photo Point 3: Downstream-9/25/06

Photo Point 4: Downstream-9/25/06

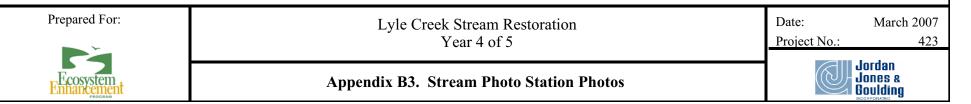


Photo Point 5: Upstream-9/25/06

Photo Point 6: Upstream-9/25/06

Photo Point 5: Downstream-9/25/06

Photo Point 6: Downstream-9/25/06

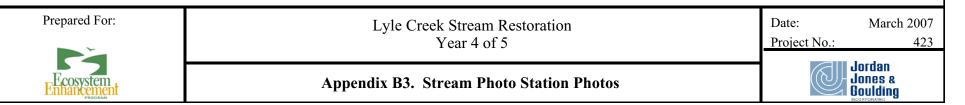


Photo Point 7: Upstream-9/25/06

Photo Point 8: Upstream-9/25/06

Photo Point 7: Downstream-9/25/06

Photo Point 8: Downstream-9/25/06

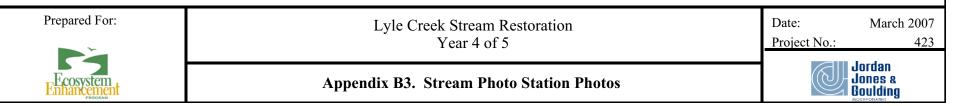


Photo Point 9: Upstream-9/25/06

Photo Point 10: Upstream-9/25/06

Photo Point 9: Downstream-9/25/06

Photo Point 10: Downstream-9/25/06

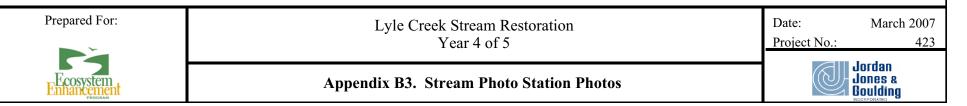
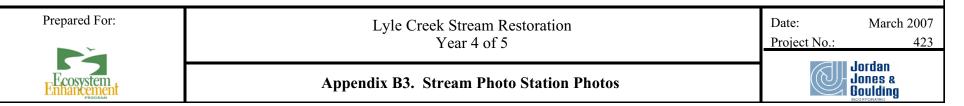
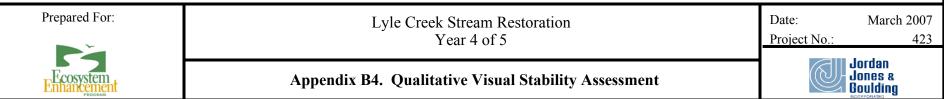
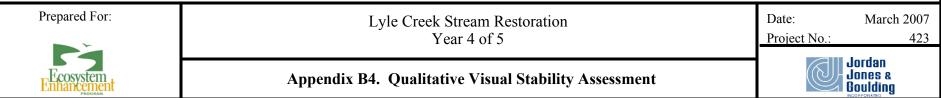
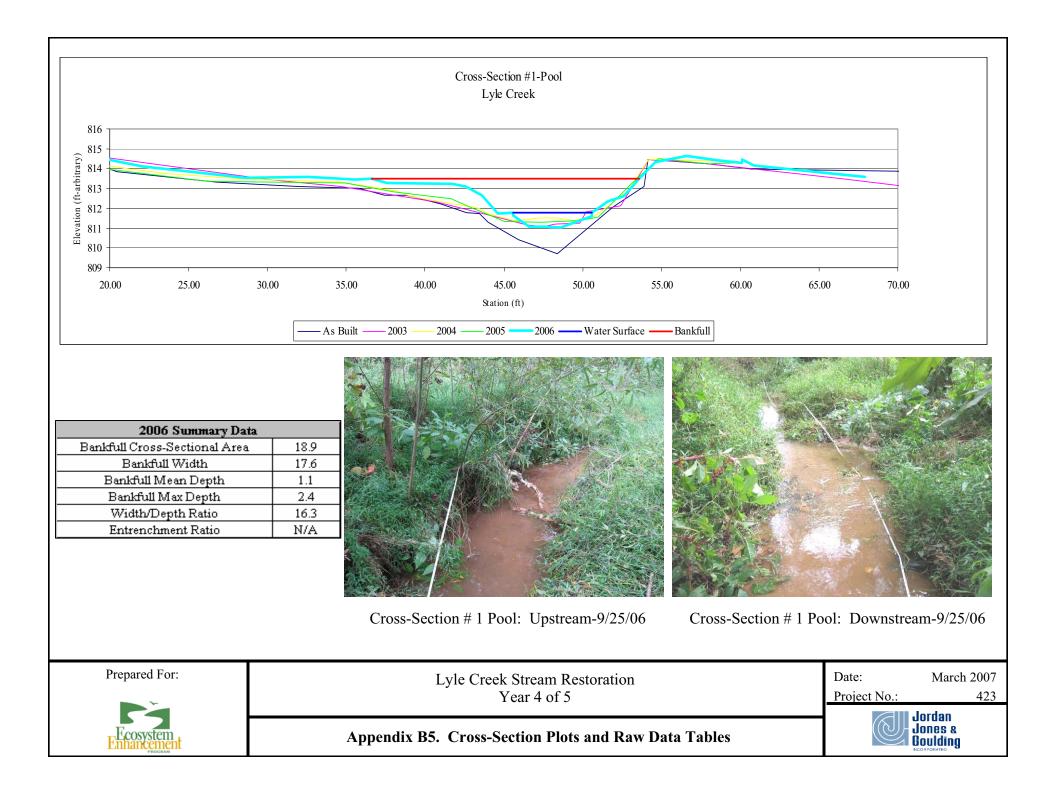


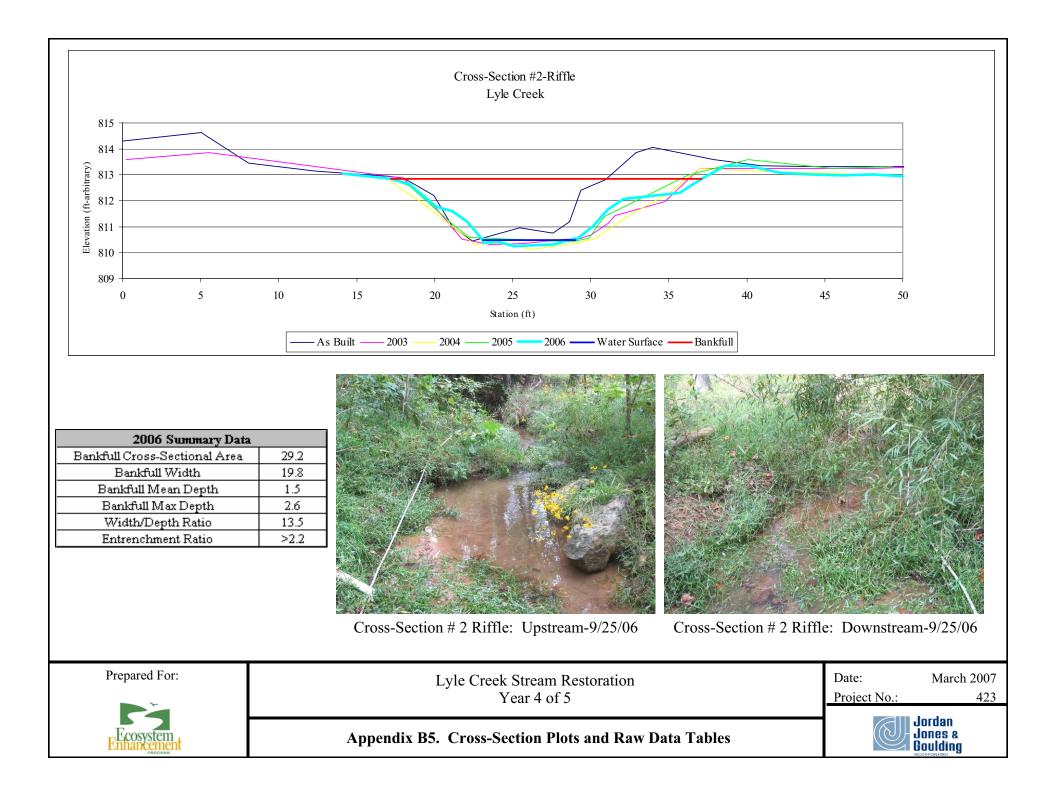
Photo Point 11: Upstream-9/25/06


Photo Point 12: Upstream-9/25/06

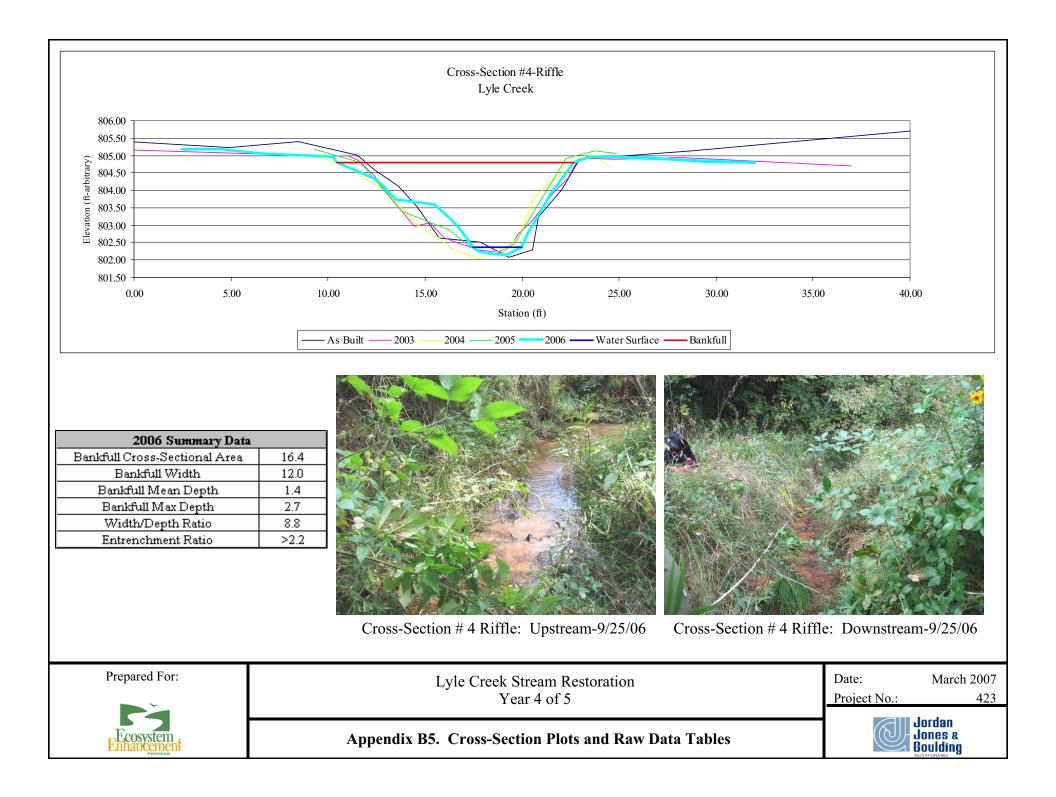

Photo Point 11: Downstream-9/25/06

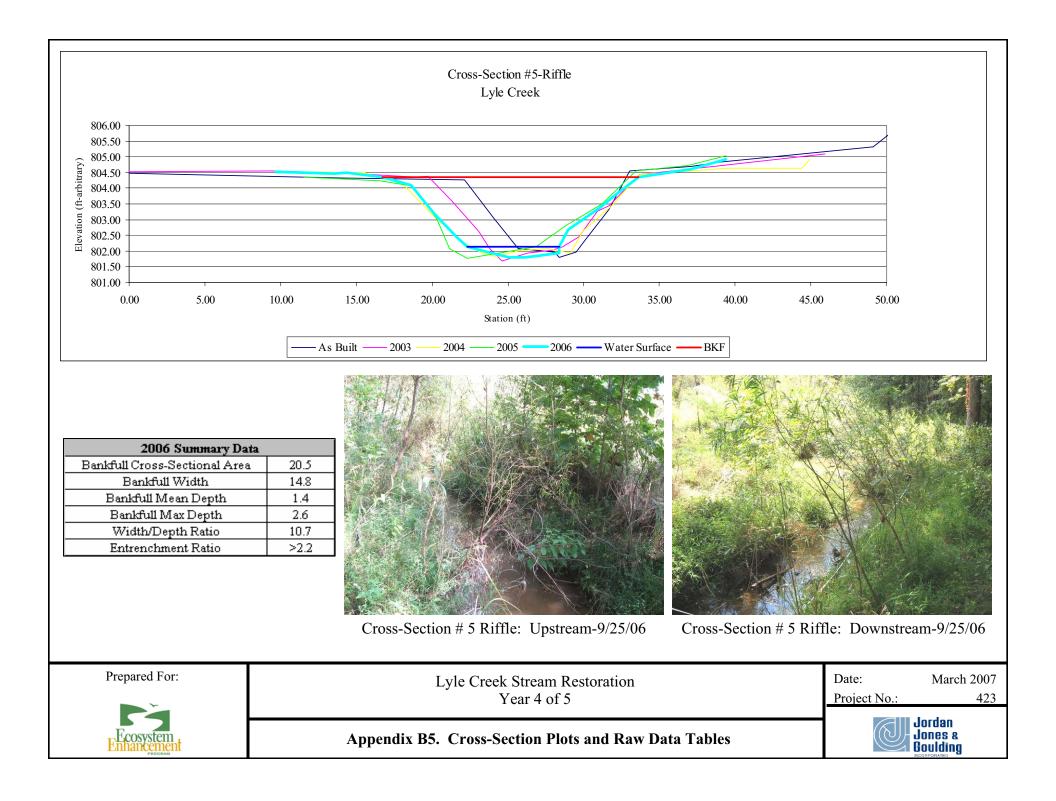

Photo Point 12: Downstream-9/25/06


Lyle Creek/Proje	ct No. 423, Reach 1: Enhancement Level I (700 ft) (0	Cells noted with (-), data was not pi	rovided)		
			Total Number assessed per		1	1
F		Performing	2006 survey	in unstable		Mean or
Feature Category		as Intended		state	Condition	lotal
	1. Present?	12		0	100%	
	2. Armor Stable?	12		0	100%	07.00%
	3. Facet grade appears stable?	12		0	100%	97.90%
	4. Minimal evidence of embedding/fining?	11		1	91.60%	
A. Riffles	5. Length appropriate?	-	12	-	-	
	1. Present?	16		0	100%	
	2. Sufficiently deep?	12		4	75%	87.50%
B. Pools	3. Length Appropriate?	-	16	-	-	
	 Upstream of meander bend centering? 	15		0	100%	100%
C. Thalweg	2. Downstream of meander centering?	15	15	0	100%	100 /0
	 Outer bend in state of limited/controlled erosion? 	12		2 moderate		
				1 severe	80%	
	Of those eroding, #w/concomitant point bar formation?	15		0	100%	93.30%
	Apparent Rc within spec?	-		-	-	
D. Meanders	Sufficient floodplain access and relief?	15	15	0	100%	
	1. General channel bed aggradation areas					
	(bar formation)?]	I/A	1/20 ft	87%	93.70%
	Channel bed degradation - areas of increasing	י' [WA .			35.70%
E. Bed General	down-cutting or head cutting?]		0	100.00%	
	1. Free of back or arm scour?	8	9	1	89%	
	2. Height appropriate?	-	-	-	-	94.50%
	3. Angle and geometry appear appropriate?	-	-	-	-	94.30%
F. Vanes	4. Free of piping or other structural failures?	9	9	0	100%	1
	1. Free of scour?					
G. Wads/Boulders	2. Footing stable?	1		N/A		
	1. Actively eroding, wasting, or slumping bank	N/A	N/A	80/700	89%	89%

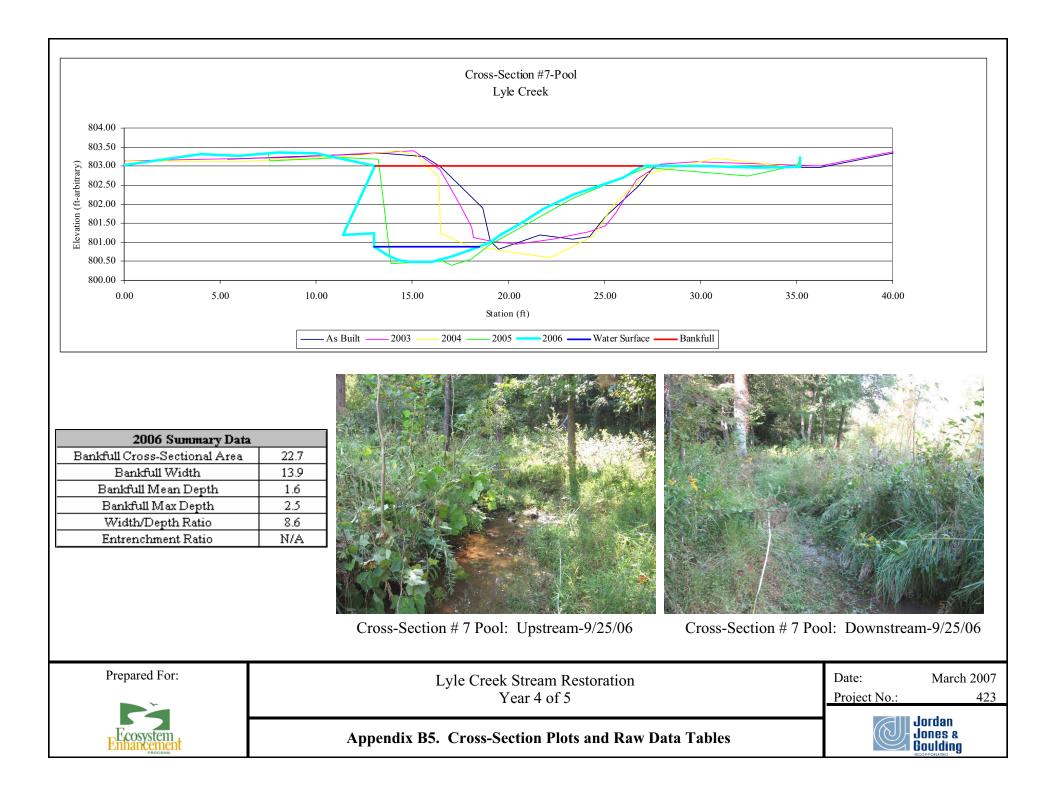

Lyle Creek /Proje	ect No. 423, Reach 2: Relocation Restoration (1240	ft) (Cells noted v	with (-), insufficier	nt data provided)		
Feature Category		(# Stable) Number Performing as Intended	Total Number assessed per 2006 survey	Total Number/feet in unstable state	% Perform in Stable Condition	IVICALL OF
	1. Present? 2. Armor Stable?	12 12		6	66.70% 66.70%	
	3. Facet grade appears stable?	12	18	6	66.70% 50%	62.50%
A. Riffles	 Minimal evidence of embedding/fining? Length appropriate? 	-		9	-	
	1. Present? 2. Sufficiently deep?	12 13	13	0	83.30% 100%	91.65%
B. Pools	 Length Appropriate? Upstream of meander bend centering? 	- 6		- 14	- 30%	50%
C. Thalweg	2. Downstream of meander centering?	14	20	6	70%	50%
	 Outer bend in state of limited/controlled erosion? Of those eroding, #w/concomitant point bar formation? 	4 4	20	4 Moderate 12 Severe	3% 25.40%	46.70%
D. Meanders	 Apparent Rc within spec? Sufficient floodplain access and relief? 	- 20	20	16	20%	40.70%
	1. General channel bed aggradation areas (bar formation)?		1	0 1/5 ft	100% 99.60%	
E. Bed General	2. Channel bed degradation - areas of increasing down-cutting or head cutting?		I/A	6/90 ft	92.70%	97.43%
	1. Free of back or arm scour?	3	7	4	42.90%	
	2. Height appropriate?	-	-	-	-	35.80%
F. Vanes	 Angle and geometry appear appropriate? Free of piping or other structural failures? 	- 2	- 7	- 5	- 28.60%	
G. Wads/Boulders	1. Free of scour?	-	<u> </u>	N/A	1 20.00 /0	
	 Actively eroding, wasting, or slumping bank 	N/A	N/A	350/1240	72%	72%

Pross-Section: 1 Veature: Pool	reek													
eature: Pool														
	2002			2003			2004			2005			2006	
	As Built			Nov-03									Sep-06	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
1.00	816.76		0.00	816.81		19.64	814.25	LP	19.60	814.15	x1 lp	17.60	814.79	
5.93	815.11		4.32	815.44		19.75	814.14		19.85	813.98	x1	22.10	814.10	
9.77	814.73		13.76	814.80		23.44	813.76		26.20	813.35	x1	28.60	813.55	
17.99	814.53		16.98	814.86		28.17	813.47		34.95	813.29	x1	32.60	813.57	
20.45	813.86		30.11	813.45		34.70	813.32	BKF	38.00	812.82	x1	35.60	813.43	
26.75	813.32		34.70	813.10		38.13	812.87		41.64	812.47	x1	36.60	813.47	BKF/tob
31.96	813.08		40.82	812.28		39.21	812.56		43.02	811.97	x1	37.60	813.27	
35.79	812.99		43.22	811.80		43.43	811.98		44.25	811.60	x1 lew	41.70	813.23	
37.44	812.65		44.95	811.47		43.93	811.73		45.02	811.34	x1	42.60	813.09	
38.81	812.65		46.45	811.17		45.68	811.37		47.38	811.31	x1	43.60	812.66	
41.00	812.21		47.47	811.06		47.39	811.50		49.74	811.36	x1	44.60	811.72	
42.64	811.78		48.31	811.22		48.40	811.53		51.00	811.54	x1 rew	45.60	811.77	lew-ws
43.47	811.73		49.84	811.25		49.34	811.37		53.04	813.18	x1	45.60	811.64	
44.01	811.29		50.21	811.82		50.74	811.58		54.81	814.50	x1	46.60	811.08	
45.93	810.42		52.43	812.14		51.67	812.12		57.98	814.24	x1	47.60	811.09	
48.40	809.70		54.22	814.46		52.94	812.90		59.56	814.28	x1 rp	48.60	811.03	
51.96	812.07		57.40	814.30		54.15	814.42					50.60	811.59	rew
53.88	813.08		66.43	813.48		54.20	814.46	RP				50.60	811.77	ws
54.15	814.44		71.96	812.96		59.69	814.37					51.60	812.36	
57.99	814.24		80.76	812.94								52.60	812.60	
60.73	813.95		91.07	812.96								53.60	813.47	BKF/tob
75.79	813.81											54.60	814.34	
85.93	814.20											56.60	814.64	
98.81	814.63											58.60	814.42	
102.92	813.66											60.10	814.30	rpin-grd
	811.29											60.10	814.46	rpin-top-b:
109.77	811.82											60.90	814.15	wood stak
109.77 117.99				1		1	1	1						
	814.82											67.90	813.58	


ross-Section: 2														
eature: Riffle														
	2002			2003			2004			2005			2006	
	As Built			Nov-03									Sep-06	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
-28	812.58		0.23	813.59		17.11	812.83	LP	17.10	812.88		14.11	813.06	
-13.08	813.4576667		5.54	813.87		17.20	812.73	BKF	18.41	812.57		17.21	812.83	BKF
5.037333333	814.627875		17.92	812.88		19.38	811.84		21.41	810.96		18.41	812.63	ltob-
8.057	813.4576667		20.01	811.75		22.57	810.31		22.27	810.59		20.11	811.75	
12.31966667	813.135875		21.76	810.53		24.57	810.37		28.73	810.42		21.11	811.58	
16.938	812.9603333		23.53	810.33		26.26	810.11		29.90	810.54		22.11	811.18	
18.00366667	812.8725417		25.64	810.34		26.51	810.13		30.91	811.40		23.11	810.47	LEW
19.95733333	812.1997083		26.77	810.43		27.26	810.20		36.19	812.96		23.11	810.39	
21.20066667	810.9709583		28.46	810.52		28.89	810.34		40.10	813.58		24.11	810.42	
22.444	810.444375		29.20	810.51		30.21	810.52		45.47	813.26		25.11	810.25	
25.46366667	810.9417083		30.07	810.67		32.60	811.49		49.35	813.31		26.11	810.27	
27.595	810.7661667		31.12	811.12		34.95	812.27					27.61	810.32	
28.66066667	811.17575		31.56	811.43		37.00	813.25					29.01	810.56	
29.37133333	812.4044583		34.77	811.95		40.76	813.15					29.01	810.47	REW
30.96966667	812.8140417		36.99	813.25		48.85	812.99					30.11	810.98	
32.92366667	813.838		48.26	813.24		49.01	813.05	RP				31.11	811.67	
33.98933333	814.0427917		55.11	813.37								32.11	812.06	
37.897	813.5747083		59.50	813.34								33.61	812.18	
40.91666667	813.3406667											35.71	812.32	
44.469	813.311375											37.11	812.83	BKF/tob
59.03366667	813.311375											38.61	813.36	
												40.11	813.34	
												42.11	813.07	
												44.11	813.01	
												46.11	812.97	
												48.11	813.00	
												50.01	812.93	
Prepare	d For:				Ly	le Creek	Stream	Restora	tion]	Date:	March 20
	*						ear 4 of						Project No.:	4
Ecosy	Fcosystem .					Cross-Se	ection P	lots and	Raw Dat	a Tables			((신))-	Jordan Jones & Goulding


2002 s Built			2003										
s Built			2003										
s Built			2003										
						2004			2005			2006	
			Nov-03									Sep-0	6
evation I	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
312.54		0.00	812.35		9.10	812.20	LP	9.10	812.29		-2.40	812.30	
312.15		9.07	812.21		10.16	810.76		10.52	812.30		0.60	812.32	
312.07		9.75	812.20		11.55	810.75		11.26	811.43		4.60	812.34	
312.20		11.33	810.44		12.86	810.33		15.24	810.33		8.60	812.27	wood stake-groun
312.20		13.02	810.31		16.84	810.18		17.73	810.43		10.60	812.42	BKF/tob
311.94		15.38	810.04		20.19	810.14		20.17	810.18		11.60	810.87	back of point bar
311.68		18.91	810.07		21.41	810.04		20.75	809.89		13.40	810.66	
311.29		21.63	810.25			810.04			809.84		15.60	810.77	
310.73													
310.09													lew
309.87		25.95	812.17			810.49					19.10		lew-ws
310.22		28.46	812.78		25.15	810.95		31.87	812.90		20.60	809.87	
310.17		33.55	813.24		26.15	812.09	BKF	34.10	813.38		22.30	810.04	
311.03		36.80	813.17		26.96	812.35					22.30	810.38	rew-ws
312.07		41.87	814.14		30.02	812.84					23.60	811.04	
312.84		53.17	815.21		33.71	813.14					25.00	811.54	
313.23					34.00	813.36	RP				26.60	812.06	
313.36											28.20	812.42	BKF/tob
314.43											30.60	812.70	
											32.60	812.86	
											34.00	813.12	rpin-ground
											34.00	813.38	rpin-top
	12.15 12.07 12.20 12.20 11.94 11.68 11.29 10.73 10.09 09.87 10.22 10.17 11.03 12.07 12.20 12.20 13.23 13.36	12.15 12.07 12.20 11.20 11.94 11.68 11.29 10.73 10.09 09.87 10.17 11.03 12.07 12.20 13.23 13.26	12.15 9.07 12.07 9.75 12.20 11.33 12.20 13.02 11.94 15.38 11.68 18.91 11.29 21.63 10.73 22.80 10.09 24.42 09.87 25.95 10.17 33.55 11.03 36.80 12.07 41.87 13.23 113.36	12.15 9.07 812.21 12.07 9.75 812.20 12.20 11.33 810.44 12.20 13.02 810.31 11.94 15.38 810.04 11.68 18.91 810.07 11.29 21.63 810.25 10.73 22.80 810.48 10.09 24.42 810.79 09.87 25.95 812.17 10.22 28.46 812.78 10.17 33.55 813.24 11.03 36.80 813.17 12.07 41.87 814.14 12.84 53.17 815.21 13.36	12.15 9.07 812.21 12.07 9.75 812.20 12.20 11.33 810.44 12.20 13.02 810.31 11.94 15.38 810.04 11.68 18.91 810.07 11.29 21.63 810.25 10.73 22.80 810.48 10.09 24.42 810.79 09.87 25.95 812.17 10.17 33.55 813.24 11.03 36.80 813.17 12.07 41.87 814.14 13.23 11.33 815.21	12.15 9.07 812.21 10.16 12.07 9.75 812.20 11.55 12.20 11.33 810.44 12.86 12.20 13.02 810.31 16.84 11.94 15.38 810.04 20.19 11.68 18.91 810.07 21.41 11.29 21.63 810.25 21.51 10.73 22.80 810.48 22.29 10.09 24.42 810.79 22.88 09.87 25.95 812.17 23.87 10.22 28.46 812.78 25.15 10.17 33.55 813.24 26.15 11.03 36.80 813.17 26.96 12.07 41.87 814.14 30.02 12.84 53.17 815.21 33.71 13.23 34.00 13.36 34.00	12.15 9.07 812.21 10.16 810.76 12.07 9.75 812.20 11.55 810.75 12.20 11.33 810.44 12.86 810.33 12.20 13.02 810.31 16.84 810.18 11.94 15.38 810.04 20.19 810.14 11.68 18.91 810.07 21.41 810.04 11.29 21.63 810.25 21.51 810.04 10.73 22.80 810.48 22.29 810.33 10.09 24.42 810.79 22.88 810.29 09.87 25.95 812.17 23.87 810.49 10.17 33.55 813.24 26.15 812.09 11.03 36.80 813.17 26.96 812.35 12.07 41.87 814.14 30.02 812.84 13.24 53.17 815.21 33.71 813.14 13.23 34.00 813.36	12.15 9.07 812.21 10.16 810.76 12.07 9.75 812.20 11.55 810.75 12.20 11.33 810.44 12.86 810.33 12.20 13.02 810.31 16.84 810.18 11.94 15.38 810.04 20.19 810.14 11.68 18.91 810.07 21.41 810.04 11.29 21.63 810.25 21.51 810.04 10.73 22.80 810.48 22.29 810.03 10.09 24.42 810.79 22.88 810.29 09.87 25.95 812.17 23.87 810.49 10.17 33.55 813.24 26.15 812.09 BKF 11.03 36.80 813.17 26.96 812.35 11.07 12.84 53.17 815.21 33.71 813.14 13.24 13.26 34.00 813.36 RP	12.15 9.07 812.21 10.16 810.76 10.52 12.07 9.75 812.20 11.55 810.75 11.26 12.20 11.33 810.44 12.86 810.33 15.24 12.20 13.02 810.31 16.84 810.18 17.73 11.94 15.38 810.04 20.19 810.14 20.17 11.68 18.91 810.07 21.41 810.04 20.75 11.29 21.63 810.25 21.51 810.04 21.38 10.73 22.80 810.48 22.29 810.03 22.86 10.09 24.42 810.79 22.88 810.29 23.95 09.87 25.95 812.17 23.87 810.49 26.99 10.17 33.55 813.24 26.15 812.09 EKF 34.10 11.03 36.80 813.17 26.96 812.35 11.23 11.23 12.07 41.87 814.14 30.02 812.84 11.24 12.24 53.17 815.21 33	12.15 9.07 812.21 10.16 810.76 10.52 812.30 12.07 9.75 812.20 11.55 810.75 11.26 811.43 12.00 11.33 810.44 12.86 810.33 15.24 810.33 12.20 13.02 810.31 16.84 810.18 17.73 810.43 11.94 15.38 810.04 20.19 810.14 20.17 810.18 11.68 18.91 810.07 21.41 810.04 20.75 809.89 11.29 21.63 810.25 21.51 810.04 21.38 809.84 10.73 22.80 810.48 22.29 810.03 22.86 810.00 10.09 24.42 810.79 22.88 810.29 23.95 810.86 09.87 25.95 812.17 23.87 810.49 26.99 812.05 10.17 33.55 813.24 26.15 812.09 BKF 34.10 813.38 11.03 36.80 813.17 26.96 812.35 11.29 11.29	12.15 9.07 812.21 10.16 810.76 10.52 812.30 12.07 9.75 812.20 11.55 810.75 11.26 811.43 12.00 11.33 810.44 12.86 810.33 15.24 810.33 12.20 13.02 810.31 16.84 810.18 17.73 810.43 11.94 15.38 810.04 20.19 810.14 20.17 810.18 11.68 18.91 810.07 21.41 810.04 20.75 809.89 11.29 21.63 810.25 21.51 810.04 21.38 809.84 10.73 22.80 810.48 22.29 810.03 22.86 810.00 10.09 24.42 810.79 22.88 810.29 23.95 810.86 09.87 25.95 812.17 23.87 810.49 26.99 812.05 10.17 33.55 813.24 26.15 812.09 813.38 11.03 10.17 33.55 813.24 26.15 812.35 11.26 11.26	12.15 9.07 812.21 10.16 810.76 10.52 812.30 0.60 12.07 9.75 812.20 11.55 810.75 11.26 811.43 4.60 12.00 11.33 810.44 12.86 810.33 15.24 810.33 8.60 12.20 13.02 810.31 16.84 810.18 17.73 810.43 10.60 11.94 15.38 810.04 20.19 810.14 20.17 810.18 11.60 11.68 18.91 810.07 21.41 810.04 20.75 809.89 13.40 11.29 21.63 810.25 21.51 810.04 21.38 809.84 15.60 10.73 22.80 810.48 22.29 810.03 22.86 810.00 18.30 10.09 24.42 810.79 22.88 810.29 23.95 810.86 19.10 10.22 28.46 812.78 25.15 810.95 31.87 812.90 20.60	12.15 9.07 812.21 10.16 810.76 10.52 812.30 0.60 812.32 12.07 9.75 812.20 11.55 810.75 11.26 811.43 4.60 812.24 12.00 11.33 810.44 12.86 810.33 15.24 810.33 8.60 812.27 12.20 13.02 810.31 16.84 810.18 17.73 810.43 10.60 812.42 11.94 15.38 810.04 20.19 810.14 20.17 810.18 11.60 810.87 11.68 18.91 810.07 21.41 810.04 20.75 809.89 13.40 810.66 11.29 21.63 810.25 21.51 810.04 21.38 809.84 15.60 810.77 10.73 22.80 810.48 22.29 810.03 22.86 810.00 18.30 810.38 10.09 24.42 810.79 22.88 810.29 23.95 810.86 19.10 8

ject Name: Lyle ss-Section: 4 ture: Riffle														
ature: Riffle														
	2002			2003			2004			2005			2006	
	As Built			Nov-03									Sep-06	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
-90.40	808.12		0.00	805.16		9.28	804.97	LP	9.28	805.18	x4 lp	2.48	805.18	
-85.58	806.93		9.56	805.00		10.81	804.78		11.69	804.79	x4	4.48	805.17	
-80.45	806.16		11.04	804.98		11.67	804.41		13.77	803.41	x4	6.48	805.05	
-58.44	805.61		11.53	804.87		12.98	804.00		16.21	802.87	x4	10.23	804.97	lpin-ground
-34.62	805.65		12.38	804.43		14.45	803.06		17.19	802.44	x4	10.48	804.8	BKF/tob
-26.48	804.84		12.85	804.06		15.75	802.63		17.88	802.24	x4 lew	12.48	804.31	
-9.60	804.84		14.44	802.97		16.30	802.35		18.85	802.18	x4	13.48	803.73	
-2.36	805.48		15.26	803.07		17.75	802.03		19.63	802.50	x4	15.48	803.60	
4.88	805.23		16.02	802.62		19.17	802.35		22.28	804.92	x4	16.28	803.20	
8.49	805.40		17.73	802.29		19.83	802.68		23.73	805.13	x4	16.88	802.84	
11.51	805.01		18.82	802.23		20.63	803.80		24.88	805.05	x4 rp	17.48	802.37	lew-ws
12.41	804.59		19.55	802.51		22.90	804.92	BKF			•	17.78	802.24	
13.62	804.12		19.82	802.75		23.98	804.90					18.48	802.17	
14.52	803.57		20.52	803.13		24.50	804.67	RP				19.18	802.14	tw
15.73	802.63		21.61	803.92								19.98	802.37	rew-ws
17.84	802.50		22.36	804.35								20.28	802.75	
19.35	802.08		22.94	804.92								21.48	803.91	
20.55	802.29		24.88	804.89								22.65	804.80	BKF/tob
20.86	803.23		28.18	804.93								23.48	804.97	
22.06	804.03		36.98	804.69								26.48	804.94	wd stake
22.97	804.89											29.48	804.83	
28.70	805.14											31.98	804.80	
42.56	805.82											25.18	804.93	
	808.21													


ross-Section: 5 eature: Riffle	4004													

N 1	2002			2003			2004			2005			2006	
	As Built			Nov-03	_		_	_					Sep-06	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
-82.00	807.34		0.00	804.51		11.57	804.52	LP	11.57	804.36	xố lp	9.65	804.52	
-77.91	806.24		9.43	804.54		15.46	804.50		16.52	804.23	хí	13.55	804.48	lpin-top
-70.01	805.47		14.94	804.48		18.02	804.16	BKF	18.72	804.07	ಬೆ	14.39	804.50	lpin-groun
-52.02	804.85		18.90	804.35		20.18	803.07		20.34	803.03	ಸ	16.71	804.36	BKF/tob
-38.93	805.09		19.75	804.37		22.13	802.25		21.14	802.08	x5 lew	18.60	804.09	ltob
-29.94	804.70		21.32	803.59		23.33	801.93		22.34	801.78	ಸ	20.13	803.20	
-16.04	804.66		23.11	802.61		24.21	801.83		24.43	801.94	ಸ	21.62	802.46	
1.13	804.46		23.78	802.09		25.78	802.03		26.85	802.12	x5 rew	22.32	802.14	lew-ws
14.22	804.32		24.59	801.68		27.64	802.08		28.88	802.81	ಸ	23.70	801.96	
22.12	804.27		26.30	801.95		29.14	801.94		31.21	803.49	ಸ	25.10	801.80	
24.03	803.08		27.90	802.01		29.89	802.63		33.46	804.55	ಸ	26.10	801.79	tw
25.67	802.07		28.64	802.14		31.79	803.42		36.87	804.71	хĴ	27.10	801.86	
28.12	801.98		29.68	802.45		33.70	804.45		39.40	805.02	хбrр	28.40	801.94	
28.39	801.78		30.93	803.27		39.53	804.65					28.40	802.14	rew-ws
29.48	801.98		31.70	803.45		44.41	804.64					29.00	802.69	
30.03	802.31		33.68	804.45		44.91	804.91	RP				31.10	803.38	
31.66	803.32		39.08	804.72								32.10	803.79	
33.03	804.56		45.92	805.10								33.60	804.36	BKF/tob
37.11	804.70											37.10	804.62	
39.02	804.85											39.40	804.91	rpin-top
39.02	007.00													· ·
49.11	805.33									1				-

ross-Section: 6 eature: Pool														
eature: Pool)													
	2002			2003			2004			2005			2006	
	As Built			Nov-03									Sep-06	
Station	Elevation	Notes	Station	Elevation	Notes	Station		Notes	Station	Elevation	Notes	Station	Elevation	Notes
-81.33	807.30		0.15	804.51		17.33	804.51	LP	17.33	804.34	xólp	13.33	804.39	
-77.33	806.22		12.94	804.29		17.68	804.42		17.42	804.17	хб	17.33	804.27	lpin-ground
-69.31	805.48		17.50	804.17		17.89	804.28		20.90	804.14	хб	17.33	804.31	lpin-top
-51.13	804.83		20.50	804.18		22.16	804.06	BKF	22.32	804.06	хб	20.33	804.34	ltob-bkf
-38.18	805.09		22.58	804.06		24.22	803.22		24.21	803.09	хб	22.43	804.03	
-29.24	804.70		23.38	803.35		27.06	802.18		25.36	802.77	хб	24.03	803.51	
-15.07	804.61		24.47	803.17		27.97	801.83		27.14	802.37	хб	25.23	803.10	
1.89	804.43		25.29	802.31		29.18	801.64		28.06	801.95	хб	26.33	802.82	
13.91	804.13		26.95	802.03		30.71	801.46		29.01	801.92	xólew	27.33	802.36	
16.99	804.22		28.18	801.81		32.80	801.31		30.89	801.65	хб	29.33	802.07	lew-ws
23.77	804.35		29.18	801.86		34.01	801.36		31.50	801.52	хб	29.33	802.03	
25.93	803.61		31.06	801.84		35.07	802.33		32.29	801.63	хб	30.03	801.94	
26.85	803.22		33.45	801.48		37.89	804.42		34.16	801.81	xórew	30.43	801.95	
27.78	802.83		33.81	801.50		40.58	804.78		35.16	802.60	хб	31.23	801.85	
29.93	802.26		34.67	801.92		45.30	805.09		37.02	803.50	хб	32.03	801.71	tw
31.17	801.70		34.85	802.03		49.46	805.51	RP	37.77	804.29	хб	33.13	801.77	
33.32	801.39		36.11	803.14					41.04	804.88	хб	33.73	801.88	
34.25	801.70		37.89	804.42					41.13	805.04	xórp	33.73	802.07	rew-ws
35.79	803.13		40.58	804.78								34.73	802.27	
37.95	804.57		45.30	805.09								35.63	803.14	
42.88	805.13		49.46	805.51								36.33	803.51	
47.81	805.43											37.83	804.34	BKF
58.91	806.57											40.93	804.98	
												43.33	805.15	

Project Name: L	-													
Cross-Section: 1	7													
Feature: Pool														
	2002			2003			2004			2005			2006	
	As Built			Nov-03									Sep-06	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
5.37	803.18		0.00	803.14		0.12	803.16		7.50	803.32	lp			
13.51	803.35		8.62	803.22		0.14	803.13	LP	7.57	803.14		0.00	803.02	
15.65	803.24		15.09	803.39		5.81	803.11	LP	11.29	803.23		4.00	803.32	
16.50	802.97		16.45	802.91		11.98	803.28		13.25	803.19		6.00	803.28	
18.64	801.89		17.50	801.99		14.22	803.41		13.88	800.45		8.00	803.35	
19.07	801.03		18.10	801.38		15.22	803.30		16.61	800.50		10.00	803.34	
19.50	800.82		18.16	801.12		16.37	802.69		17.05	800.40		13.04	803.01	BKF
21.64	801.20		19.01	801.03		16.48	801.23	W	18.05	800.55		11.40	801.19	
23.35	801.09		20.42	800.95		17.90	800.90		19.00	800.92	rew	13.00	801.23	lew
24.21	801.14		22.31	801.07		22.16	800.60	Т	21.61	801.66		13.00	800.88	ws
25.06	801.68		24.22	801.28		24.45	801.18	EW	23.31	802.14		13.70	800.66	
26.78	802.49		25.08	801.44		25.41	801.94		27.22	802.96		14.30	800.53	
27.63	803.02		25.57	801.77		27.16	802.78	BKF	32.49	802.75		14.90	800.49	
36.19	802.97		26.70	802.65		30.80	803.20		35.06	803.02		16.00	800.49	
41.76	803.51		27.91	803.05		34.71	802.99		35.24	803.22	rp	17.00	800.62	
53.75	804.31		29.76	803.12		35.10	803.03				•	18.47	800.88	rew-ws
68.73	804.42		36.22	803.00		35.15	803.22	RP				19.08	801.02	
76.86	804.47		42.75	803.64								19.60	801.20	
86.71	805.39											20.83	801.54	
												21.81	801.88	
												23.40	802.26	
												26.00	802.69	
												27.00	803.01	BKF
												30.00	803.00	
												33.00	802.97	
												35.20	802.98	rpin-ground
												35.20	803.22	rpin-top
					•									
Prepa	Prepared For:					Lyle (tream Ro r 4 of 5	estoration			Da Pro	te: oject No.:	March 20
Entra	osystem			Арр	endix l	35. Cro			s and Raw	Data Tabl	es		((V))	Jordan Jones & Goulding

				200)6				
Station	TW-2006	WS-2006	BKF-2006	Notes	Station	TW-2006	WS-2006	BKF-2006	Notes
0.00	811.30	812.39			304.40	811.02	811.50		
3.00	812.13	812.39	0.26	pool	308.40	810.46	811.50		
8.00	812.15	812.40			311.40	810.96	811.50		
10.00	811.20	812.30			314.40	811.12	811.40		glide
11.00	812.02	812.35			315.30	811.24	811.35		riffle
26.00	812.10	812.32			320.90	811.33	811.44		x-vane invert
35.00	812.03	812.35			327.90	809.92	811.22	1.30	max pool
42.00	812.30	812.39			333.90	810.42	811.17		glide
53.00	812.00	812.28		riffle	334.90	810.62	811.10		riffle
65.00	811.95	812.24			344.40	810.76	811.01		run
70.00	812.00	812.10			349.40	810.10	811.01		run
76.20	812.10	812.39			361.40	810.11	811.00		pool
86.00	811.75	812.50		invert cross-vane	364.40	809.64	811.00	1.36	max pool
100.09	811.76	812.23			368.40	810.30	810.98		glide
117.65	811.70	812.12	0.42	max pool	371.40	810.68	810.96		
127.40	811.55	812.12		invert-cross vane	382.90	810.01	810.86		
143.20	811.88	812.04			385.40	809.82	810.86		
148.40	811.90	812.15		riffle	390.00	810.53	810.82		invert x-vane
180.40	811.55	811.87		run	394.90	809.51	810.71	1.20	max pool
195.80	811.23	811.86		pool	409.80	810.18	810.68		glide
202.40	810.59	811.86	1.27	max pool	411.10	810.25	810.68		run
207.40	811.26	811.86		glide	425.40	809.92	810.65		pool
210.40	811.44	811.84		run	434.80	809.18	810.64	1.46	maxpool2
213.40	811.60	811.80		riffle	438.90	810.01	810.63		glide
221.40	811.64	811.80		iinvert	440.40	810.22	810.60		f
230.40	810.44	811.69			441.40	810.08	810.58		run/pool
235.40	811.11	811.66		glide	446.40	809.87	810.57	0.70	maxpool
237.40	811.35	811.62		riffle	450.40	810.07	810.57		glide
246.90	811.04	811.56		run	452.60	810.18	810.48		f
253.40	810.96	811.52		pool/tree down	483.40	809.67	810.27		pool
259.40	810.70	811.52	0.82	maxpool	491.70	808.42	810.26	1.84	max pool
270.40	810.85	811.50		pool	499.40	809.68	810.26		glide
274.40	810.92	811.50		glide	500.00	810.00	810.26		x-vane invert
277.40	810.93	811.50	0.57	run/oool.compound	503.60	807.21	809.58	2.37	max pool
287.40	810.67	811.50							

Prepared For:

Appendix B6. Longitudinal Plots and Raw Data Tables

Lyle Creek Stream Restoration Year 4 of 5

March 2007

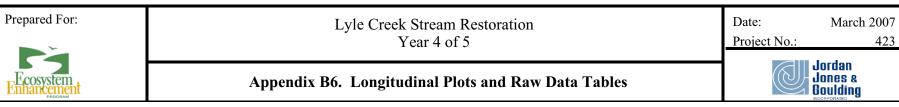
423

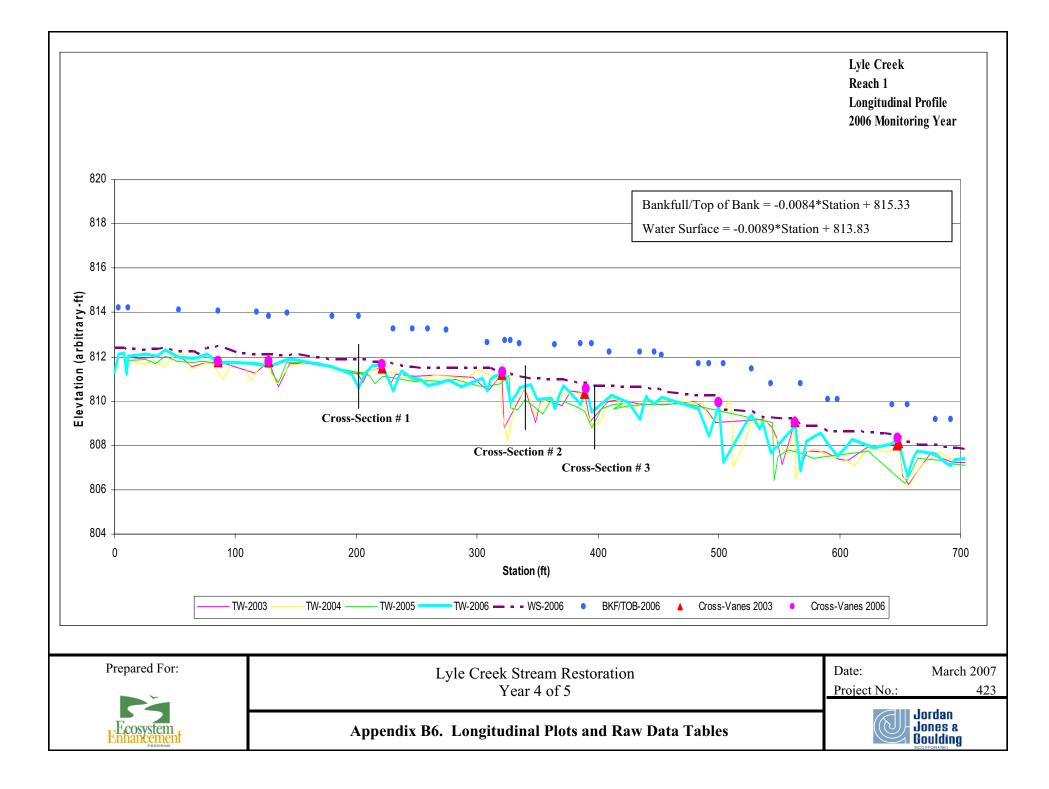
Date:

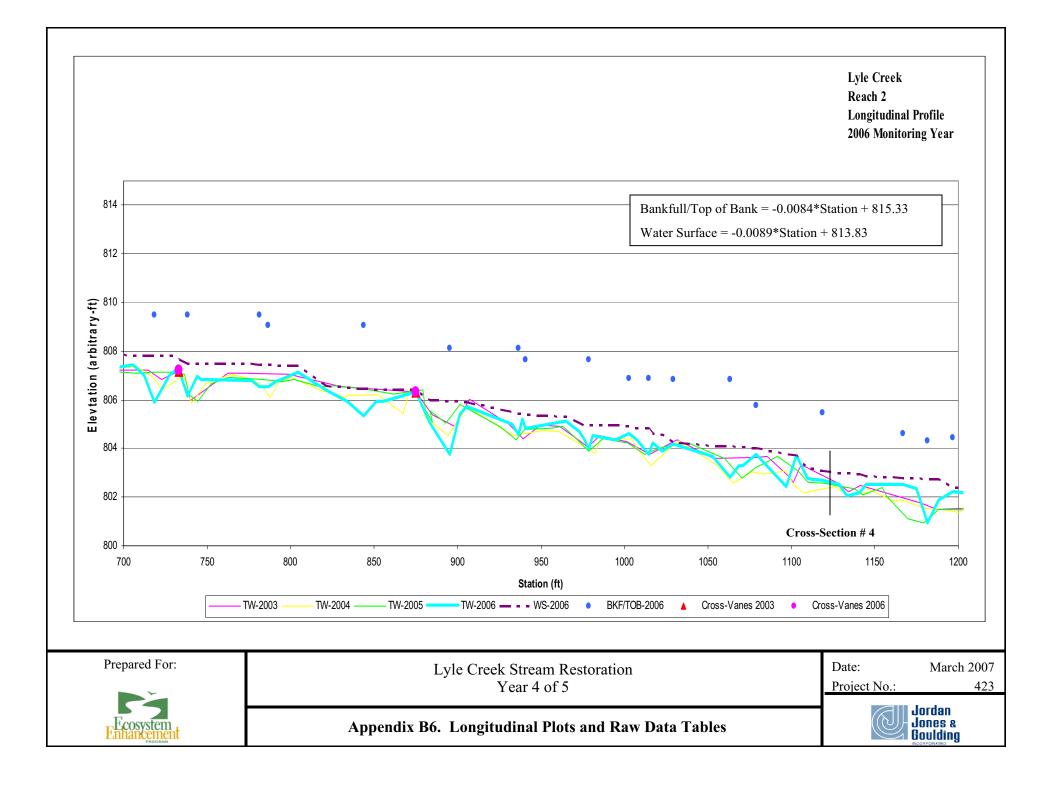
Project No.:

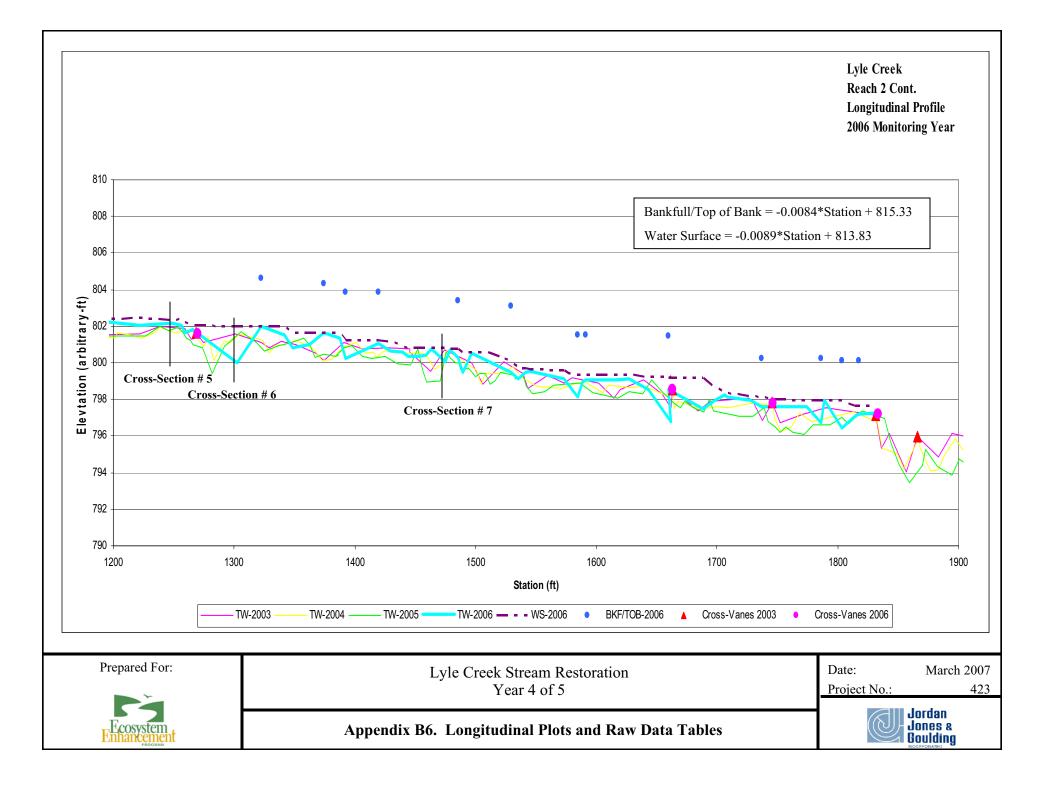
					2006				
Station	TW-2006	WS-2006	BKF-2006	Notes	Station	TW-2006	WS-2006	BKF-2006	Notes
523.40	809.08	809.57		glide	781.47	806.54	807.44	0.90	max poo
527.40	809.36	809.56		riffle	786.47	806.52	807.44		glide
533.50	808.76	809.35		pool	791.47	806.76	807.40		riffle
536.40	809.04	809.28		run	804.47	807.12	807.40		run
542.90	807.65	809.25	1.60	max pool	821.27	806.43	806.56		riffle
561.40	808.78	809.24		glide	834.07	805.96	806.50		pool
563.00	809.02	809.22		x-vane invert	843.97	805.34	806.44	1.10	max po
567.40	806.85	808.88	2.03	max pool	851.47	805.93	806.43		glide
572.50	808.19	808.88			855.47	805.95	806.43		run
580.90	808.48	808.87		glide	874.91	806.34	806.43		x-vane inv
584.10	808.54	808.84		riffle	883.71	805.06	805.98		pool
590.40	808.07	808.67		pool	895.41	803.75	805.95		
598.40	807.52	808.67	1.15	max pool	901.71	805.41	805.95		glide
606.80	808.03	808.66		glide	905.71	805.71	805.88		riffle
610.00	808.29	808.65		run/shallow pool	932.71	804.99	805.51		run/po
628.40	807.90	808.60		•	936.71	804.57	805.41	0.84	max
636.80	808.01	808.56		glide	938.71	805.23	805.41		glide
643.50	808.07	808.53		riffle	940.71	804.81	805.39		run
648.10	808.32	808.48		x-vane invert	964.71	805.14	805.30		riffle
656.00	806.63	808.19	1.56	max pool	972.71	804.68	805.04		run
660.90	807.42	808.18		glide	975.71	804.39	804.97		pool
664.40	807.74	808.04		riffle	978.71	803.99	804.97	0.98	max po
679.40	807.61	808.03		run	981.21	804.51	804.95		glide
687.40	807.24	807.92		pool	994.71	804.37	804.94		run
691.80	807.07	807.92	0.85	max pool	1002.71	804.61	804.92		riffle
695.60	807.36	807.88		glide	1007.71	804.35	804.81		pool
697.40	807.36	807.88		riffle	1014.71	803.74	804.81	1.07	max
705.90	807.44	807.84		run	1016.71	804.21	804.61		run
712.40	807.00	807.81		pool	1022.71	803.91	804.59		
718.40	805.90	807.81	1.91	max pool	1029.11	804.20	804.29		riffle
727.40	807.00	807.80		glide	1052.71	803.68	804.12		pool
730.20	807.20	807.80		riffle	1063.21	802.80	804.12	1.32	max po
733.17	807.21	807.63		x-vane invert	1803.48	796.46	797.94	1.48	max po
738.47	806.17	807.47	1.30	max pool	1814.48	797.05	797.68		glide
743.77	806.98	807.46		glide	1817.48	797.19	797.68		
	806.85	807.46		run	1831.48	797.25	797.67		
	806.80	807.46		pool					
746.47 776.47				pool	1831.48	797.25	797.67	Data	

Lyle Creek Stream Restoration Year 4 of 5


Date: Project No.:


March 2007 423




Appendix B6. Longitudinal Plots and Raw Data Tables

	T			2006			I		T
Station	TW-2006	WS-2006	BKF-2006	Notes	Station	TW-2006	WS-2006	BKF-2006	Notes
1068.71	803.30	804.06		glide	1458.98	800.42	800.81		glide
1070.71	803.28	804.04		run/pool	1463.28	800.77	800.81		mcb
1078.71	803.75	804.03		riffle	1474.48	800.07	800.81		pool
1096.71	802.45	803.74			1478.78	800.72	800.76		run
1103.00	803.71	803.73			1485.28	800.27	800.76		pool
1109.71	802.76	803.18		run	1489.48	799.47	800.61		
1111.80	802.72	803.15			1496.48	800.52	800.61		riffle
1118.71	802.70	803.07		riffle	1509.48	800.11	800.60		
1128.71	802.51	803.00			1529.08	799.46	800.11		pool
1133.21	802.03	802.98		pool	1535.48	799.13	799.69		
1140.71	802.20	802.96		glide	1541.48	799.50	799.69		glide
1144.71	802.54	802.86		riffle	1545.48	799.55	799.67		run
1167.11	802.51	802.79		run	1573.48	799.14	799.61		riffle
1174.71	802.35	802.76		pool	1577.48	798.80	799.43		pool
1181.71	800.93	802.73	1.80	max pool	1584.48	798.13	799.38	1.25	max pool
1188.11	801.89	802.73		glide	1588.48	798.96	799.38		glide
1196.50	802.21	802.41		run	1591.48	799.04	799.38		run
1222.01	802.04	802.48			1616.48	799.08	799.38		
1248.71	802.15	802.33		riffle	1627.48	799.11	799.38		pool
1256.71	802.06	802.40			1643.48	798.56	799.22		
1259.50	801.63	802.23			1662.10	796.79	799.22		glide
1266.20	801.83	802.04			1662.93	798.51	799.22		invert
1269.80	801.56	802.03		j-hook invert	1664.00	798.53	799.21		riffle
1302.48	799.99	802.01			1688.48	797.46	799.16		
1317.48	801.53	801.99		glide	1698.48	797.93	798.68		run
1322.48	801.96	801.99		riffle	1706.48	798.26	798.41		invert
1341.48	801.54	801.98		run	1708.48	798.10	798.38		run
1348.48	800.83	801.64			1721.18	798.00	798.24		
1362.48	800.97	801.64			1727.48	797.95	798.19		riffle
1374.48	801.64	801.64			1736.78	797.59	798.13		run
1387.48	801.32	801.61		pool	1746.60	797.76	798.00		invert
1392.48	800.25	801.25	1.00	max pool	1750.48	797.61	797.99		
1419.48	801.07	801.25		riffle	1774.48	797.60	797.97		pool
1429.48	800.66	801.15			1786.48	796.70	797.97	1.27	max pool
1439.48	800.58	800.92		run	1788.78	797.97	797.94		x-vane inve
1444.48	800.36	800.84		pool					
1452.48	800.35	800.84							

Riffle Sl	ope			
Reach l				
Riffle		Water		
Station		Elevation		
(ft)	Length (ft)	(ft)	Change	Slope (ft/ft)
53		812.5		
86	33	812.3	0.2	0.61%
148.4		812.15		
180.4	32	811.87	0.28	0.87%
213.4		811.8		
221.4	8	811.8	0	0.00%
237.4		811.62		
246.9	9.5	811.56	0.06	0.63%
320.9		811.4		
323.3	2.4	811.2	0.2	8.33%
334.9		811.1		
344.4	9.5	811.01	0.09	0.95%
440.4		810.6		
441.4	1	810.58	0.02	2.00%
452.6		810.48		
483.4	30.8	810.27	0.21	0.68%
527.4		809.56		
533.5	б.1	809.35	0.21	3.44%
584.1		808.84		
590.4	6.3	808.67	0.17	2.70%
643.5		808.53		
648.1	4.6	808.48	0.05	1.09%
664.4		808.04		
679.4	15	808.03	0.01	0.07%
697.4		807.88		

Riffle Slope				
Reach 2				
Riffle Station		Water		
		Elevation		
(fi)	Length (ft)	(fi)	Change	Slope (ft/ft)
705.9	8.5	807.84	0.04	0.47%
730.2		807.8		
733.17	2.97	807.63	0.17	5.72%
791.47		807.4		
804.47	13	807.4	0	0.00%
821.27		806.56		
834.07	12.8	806.5	0.06	0.47%
905.71		805.88		
932.71	27	805.51	0.37	1.37%
964.71		805.3		
972.71	8	805.04	0.26	3.25%
1002.71		804.92		
1007.71	5	804.81	0.11	2.20%
1029.11		804.29		
1052.71	23.6	804.12	0.17	0.72%
1078.71		804.03		
1109.71	31	803.18	0.85	2.74%
1118.71		803.07		
1133.21	14.5	802.98	0.09	0.62%
1144.71		802.86		
1167.11	22.4	802.79	0.07	0.31%
1248.71		802.33		
1266.2	17.49	802.04	0.29	1.66%
1322.48		801.99		
1341.48	19	801.98	0.01	0.05%
1419.48		801.25		0.0210
1439.48	20	800.92	0.33	1.65%
1496.48	20	800.61	0.00	1.0510
1529.08	32.6	800.11	0.5	1.53%
1573.48	52.0	799.61	0.5	1.5570
1577.48	4	799.43	0.18	4.50%
1660		799.21	0.10	4.2070
1698.48	38.48	798.68	0.53	1.38%
1727.48	50.40	798.19	0.00	1.5670
1727.48	9.3	798.19	0.06	0.65%
1100.76	7.3	1 170.13	0.00	0.0070

Project Name:	Lyle Creek
Pool Spacing	
Reach 1	
Station (ft)	Spacing (ft)
67	
95	28
124	29
202.5	78.5
239	36.5
269.5	30.5
309.4	39.9
321	11.6
366.3	45.3
391.2	24.9
430.5	39.3
455	24.5
486	31
549.6	63.6
585.4	35.8
612	26.6
643	31
686	43

Prepared For:

Appendix B6. Longitudinal Plots and Raw Data Tables

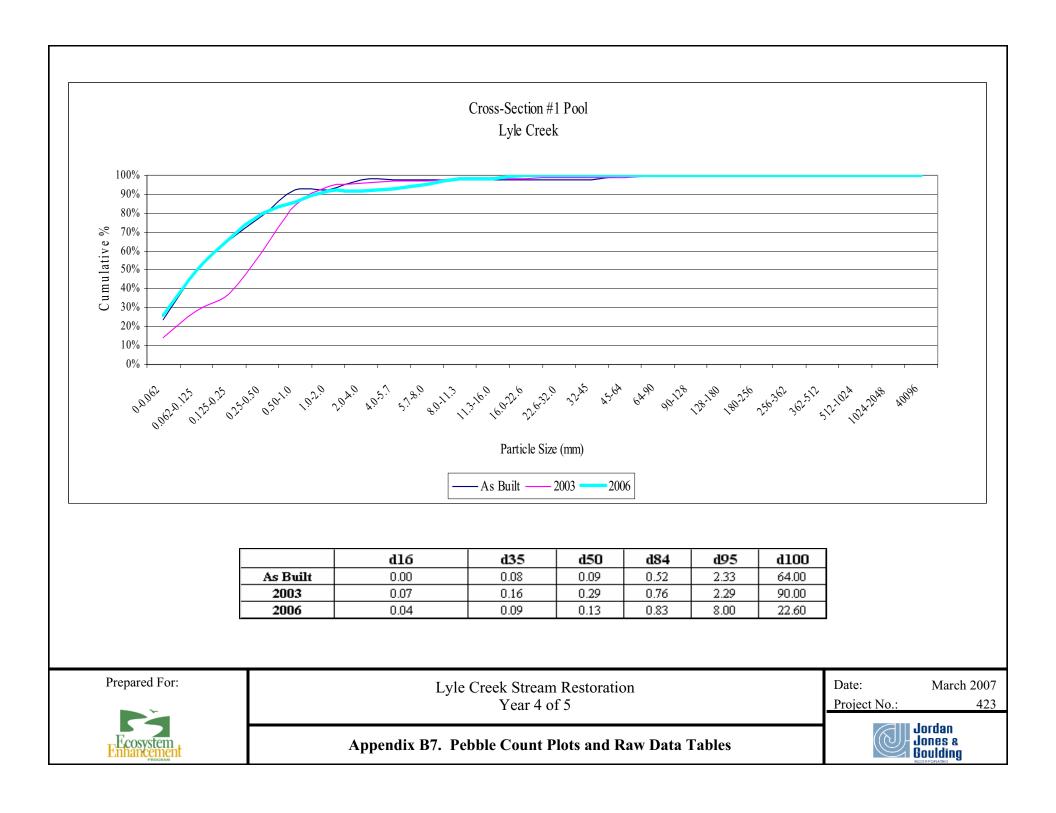
March 2007

Date:

Project Name:	Lyle Creek
Pool Spacing	
Reach 2	
Station (ft)	Spacing (ft)
748.5	
795.7	47.2
837	41.3
879	42
915	36
963.5	48.5
1133.5	170
1182	48.5
1280	98
1370	90
1430	60
1467	37
1513	46
1562	49
1621	59
1764	143
1781	17

Project Name:	Lyle Creek		
Pool Length			
Reach l			
Station (ft)	Length (ft)	Station (ft)	Length (ft)
3		390	
53	50	411.1	21.1
86		425.4	
127.4	41.4	440.4	15
195.8	68.4	483.4	
210.4	14.6	500	16.6
221.4		527.4	27.4
237.4	16	533.5	
253.4		563	29.5
270.4	17	584.1	21.1
277.4	7	590.4	
320.9	43.5	648.1	38.1
323.4		664.4	16.3
334.9	11.5	687.4	
361.4		697.4	10
371.4	10		

Project Name:	Lyle Creek		
Pool Length			
Reach 2			
Station (ft)	Length (ft)	Station (ft)	Length (ff)
712.4		1174.71	
730.2	17.8	1196.5	21.79
733.17		1266.2	
746.47	13.3	1322.48	56.28
776.47		1387.48	
791.47	15	1419.48	32
834.07		1444.48	
855.47	21.4	1478.78	34.3
874.91		1485.28	
905.71	30.8	1496.48	11.2
932.71		1529.08	
940.71	8	1545.48	16.4
975.71		1577.48	
994.71	19	1591.48	14
1007.71		1627.48	
1016.71	9	1660	32.52
1052.71		1706.48	
1070.71	18	1708.48	2
1133.21		1774.48	
1167.11	33.9	1788.78	14.3


Prepared For:	Lyle Creek Stream Restoration Year 4 of 5	Date: Project No.:	March 2007 423 Jordan
Enhancement	Appendix B6. Longitudinal Plots and Raw Data Tables	((U))-	Jones & Goulding

Project N	ame: Lyle Creek				
Pattern M	leasurements				
	Meander	Radius of	Channel		
	Wavelength	Curvature	Beltwidth		
	(Lm)	(Rc)	(Wblt)		
Reach 1	161	15	29		
	145	18	110		
	166	25	80		
	60	40	94		
	105	25	43		
	108	31	47		
	123	38.9	47		
	124	21	47		
	153	42	52		
	153	31	59		
	152	25	61		
	156	29	61		
		33	81		
		43	50		
		50	48		
		21			
		30			
		28			
Min	60	15	29		
Max	166	50	110		
Median	148.5	29.5	52		

Project N	ame: Lyle Creek			
Pattern M	leasurements			
	Meander	Radius of	Channel	
	Wavelength	Curvature	Beltwidth	
	(Lm)	(Rc)	(Wblt)	
Reach 2	61	13	27	
	64	10	31	
	60	12	34	
	118	14	38	
	81	13	30	
	49	14	15 30 39	
	68	21		
	67	17		
	80	21	23	
	101	12.5	22	
	118	21	28	
	150	17	22	
	62	16	40	
	63	16	56	
	48	17	32	
	53	10	31	
	42	15	23	
	75	25	31	
	79	15	49	
	78	12	40	
	65	40	40	
Min	42	10	15	
Max	150	40	56	
Median	67	15	31	

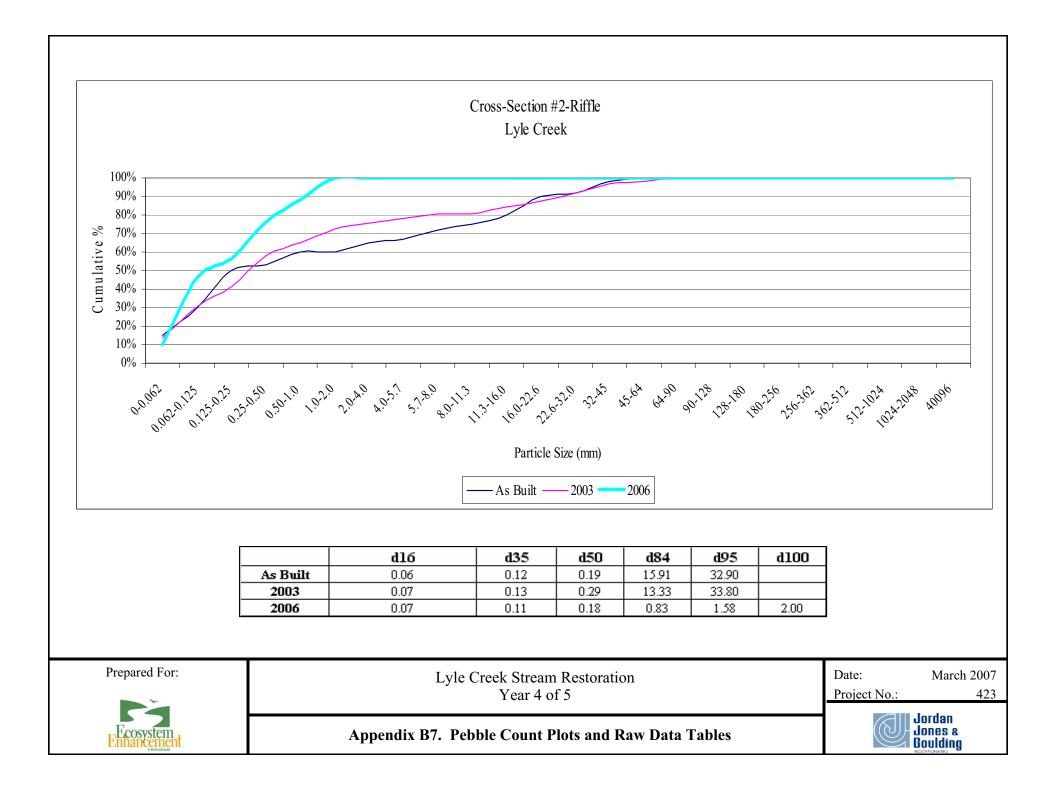
Prepared For:	Lyle Creek Stream Restoration	Date:	March 2007
	Year 4 of 5	Project No.:	423
Ecosystem Enhancement	Appendix B6. Longitudinal Plots and Raw Data Tables		Jordan Jones & Goulding

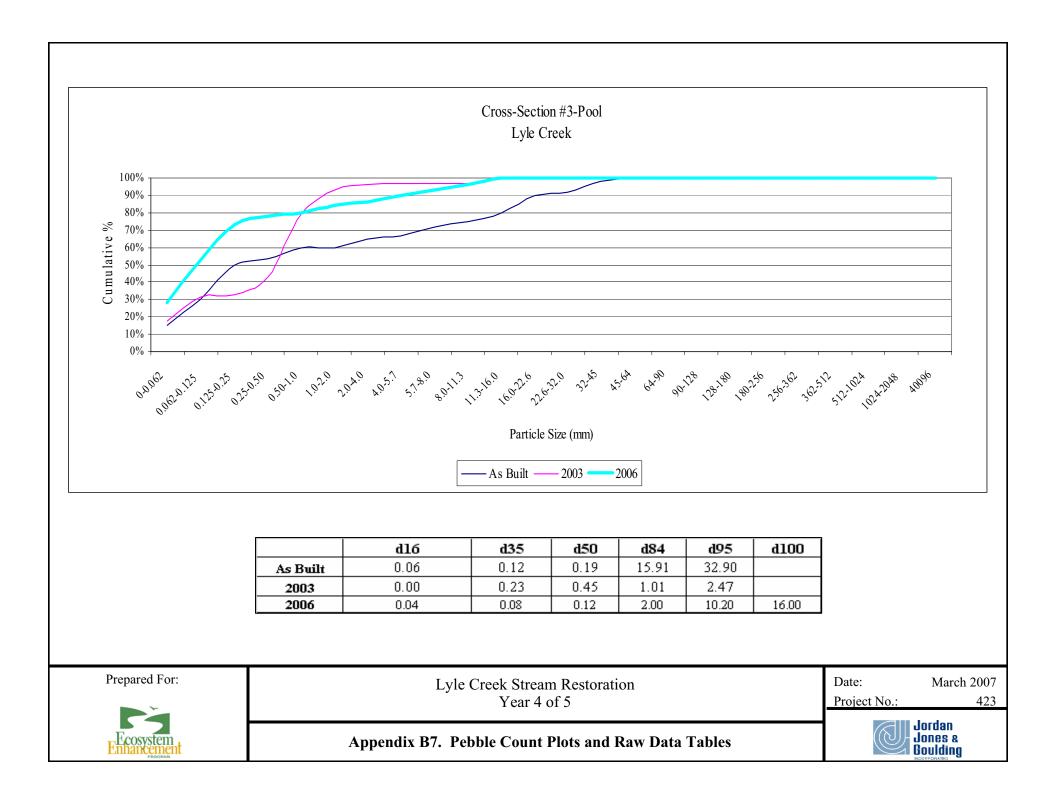
Project Name: Ly Pross-Section: 1	le Creek										
eature: Pool											
				As Built			2003			2006	
Description	Material	Size (mm)	Total #	Item %	Cum %	Total #	Item %	Cum %	Total #	Item %	Cum %
Silt/Clay	silt/clay	0-0.062	9	24%	24%	14	14%	14%	26	26%	26%
	very fine sand	0.062-0.125	10	26%	50%	14	14%	28%	24	24%	50%
	fine sand	0.125-0.25	б	16%	66%	9	9%	37%	16	16%	66%
Sand	medium sand	0.25-0.50	5	13%	79%	22	22%	60%	14	14%	80%
	coarse sand	0.50-1.0	5	13%	92%	24	24%	84%	б	6%	86%
	very coarse sand	1.0-2.0	0	0%	92%	10	10%	94%	б	6%	92%
	very fine gravel	2.0-4.0	2	5%	97%	2	2%	96%	0	0%	92%
G	fine gravel	4.0-5.7	0	0%	97%	1	1%	97%	1	1%	93%
r	fine gravel	5.7-8.0	0	0%	97%	0	0%	97%	2	2%	95%
a	medium gravel	8.0-11.3	0	0%	97%	1	1%	98%	3	3%	98%
	medium gravel	11.3-16.0	0	0%	97%	0	0%	98%	0	0%	98%
v	course gravel	16.0-22.6	0	0%	97%	0	0%	98%	2	2%	100%
e	course gravel	22.6-32.0	0	0%	97%	1	1%	99%	0	0%	100%
1	very coarse gravel	32-45	0	0%	97%	0	0%	99%	0	0%	100%
	very coarse gravel	45-64	1	3%	100%	0	0%	99%	0	0%	100%
Cobble	small cobble	64-90	0	0%	100%	1	1%	100%	0	0%	100%
	medium cobble	90-128	0	0%	100%	0	0%	100%	0	0%	100%
Connie	large cobble	128-180	0	0%	100%	0	0%	100%	0	0%	100%
	very large cobble	180-256	0	0%	100%	0	0%	100%	0	0%	100%
	small boulder	256-362	0	0%	100%	0	0%	100%	0	0%	100%
Boulder	small boulder	362-512	0	0%	100%	0	0%	100%	0	0%	100%
Domnei	medium boulder	512-1024	0	0%	100%	0	0%	100%	0	0%	100%
	large boulder	1024-2048	0	0%	100%	0	0%	100%	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%	0	0%	100%	0	0%	100%
TOTAI	./%of whole count		38	100%	100%	99	100%	100%	100	100%	100%
TOTAI	'		38	1	e Creek S		1	100%	100	Date: Project N	March
Ecosys	tem		Append	ix B7. P	ebble Co	unt Plots	and Rav	v Data Ta	bles	(Jordan Jones & Goulding

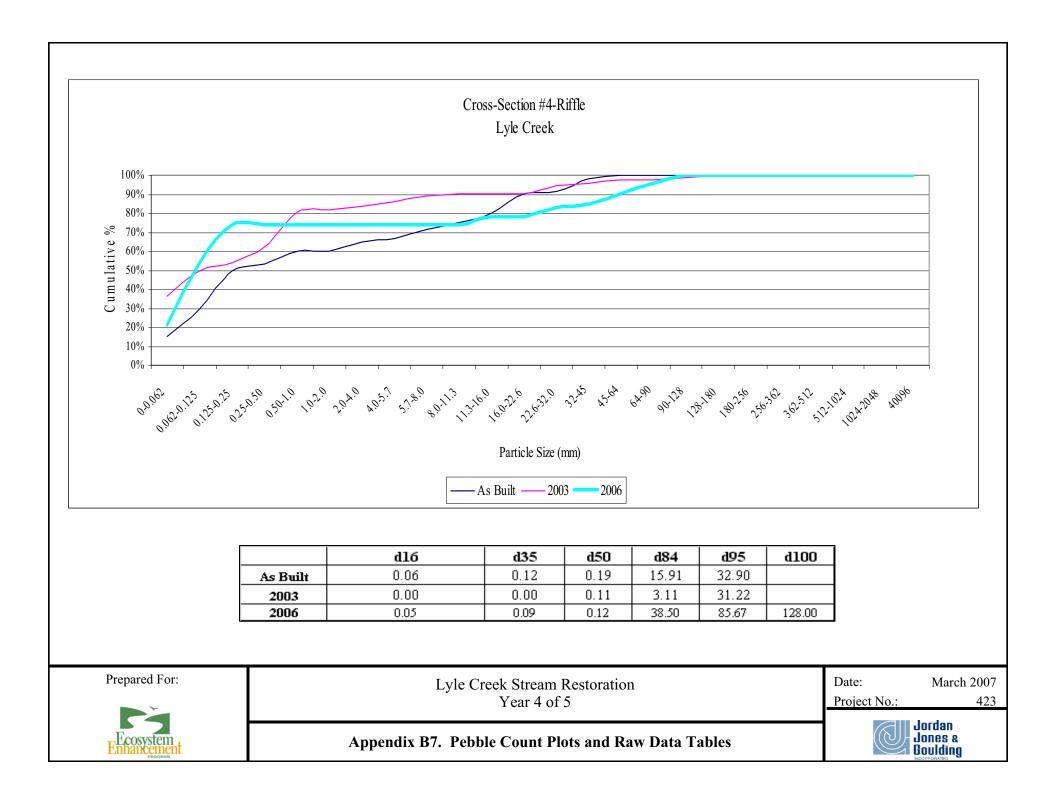
Project Name: Lyl	e Creek										
Cross-Section: 2											
Feature: Riffle											
				As Built	~ ~		2003	<i>a v</i>		2006	
Description	Material	Size (mm)	Total #	Item %	Cum %	Total #	Item %	Cum %	Total #	Item %	Cum %
Silt/Clay	silt/clay	0-0.062	9	15%	15%	14	14%	14%	10	10%	10%
	very fine sand		9	15%	30%	17	17%	30%	36	36%	46%
	fine sand	0.125-0.25	12	20%	50%	11	11%	41%	10	10%	56%
Sand	medium sand	0.25-0.50	2	3%	53%	17	17%	58%	20	20%	76%
	coarse sand	0.50-1.0	4	7%	60%	7	7%	65%	12	12%	88%
	very coarse sand	1.0-2.0	0	0%	60%	8	8%	73%	12	12%	100%
	very fine gravel	2.0-4.0	3	5%	65%	3	3%	75%	0	0%	100%
G	fine gravel	4.0-5.7	1	2%	67%	3	3%	78%	0	0%	100%
r –	fine gravel	5.7-8.0	3	5%	72%	2	2%	80%	0	0%	100%
a	medium gravel	8.0-11.3	2	3%	75%	0	0%	80%	0	0%	100%
	medium gravel	11.3-16.0	3	5%	80%	4	4%	84%	0	0%	100%
v	course gravel	16.0-22.6	б	10%	90%	3	3%	87%	0	0%	100%
e	course gravel	22.6-32.0	1	2%	92%	5	5%	92%	0	0%	100%
1	very coarse gravel	32-45	4	7%	98%	5	5%	97%	0	0%	100%
	very coarse gravel	45-64	1	2%	100%	1	1%	98%	0	0%	100%
	small cobble	64-90	0	0%	100%	2	2%	100%	0	0%	100%
	medium cobble	90-128	0	0%	100%	0	0%	100%	0	0%	100%
Cobble	large cobble	128-180	0	0%	100%	0	0%	100%	0	0%	100%
	very large cobble	180-256	0	0%	100%	0	0%	100%	0	0%	100%
	small boulder	256-362	0	0%	100%	0	0%	100%	0	0%	100%
F	small boulder	362-512	0	0%	100%	0	0%	100%	0	0%	100%
Boulder —	medium boulder	512-1024	0	0%	100%	0	0%	100%	0	0%	100%
	large boulder	1024-2048	0	0%	100%	0	0%	100%	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%	0	0%	100%	0	0%	100%
	L/%of whole count		60	100%	100%	102	100%	100%	100	100%	100%

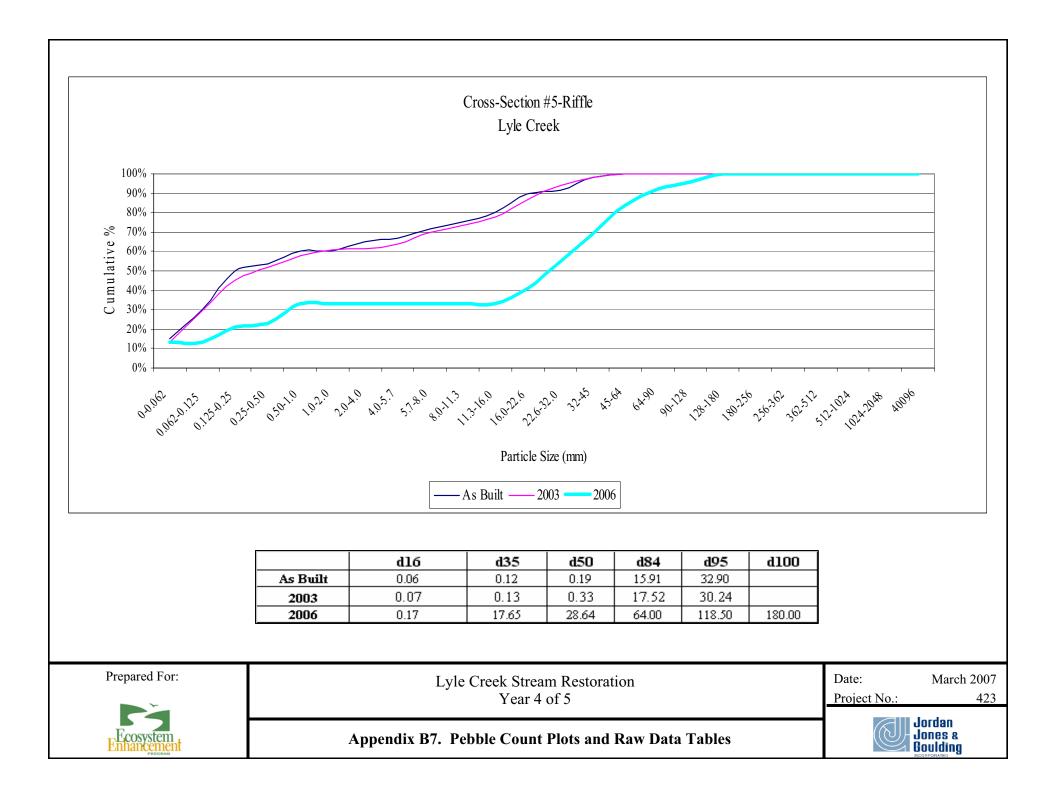
Prepared For:

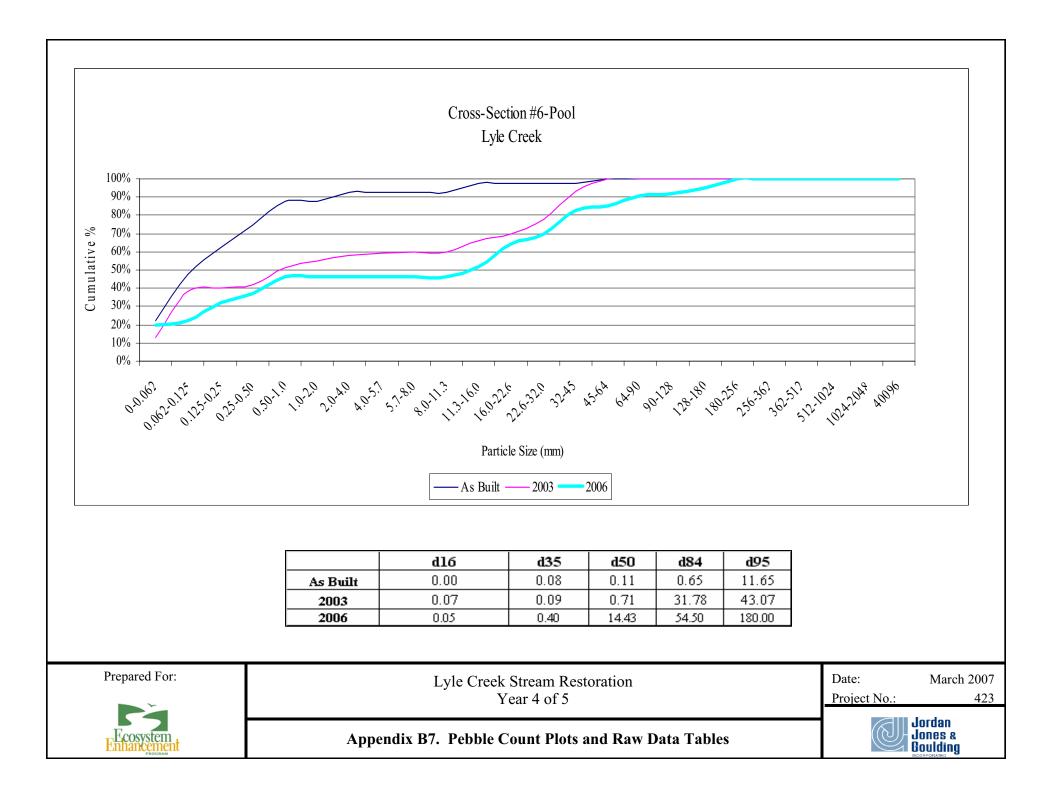
Lyle Creek Stream Restoration Year 4 of 5

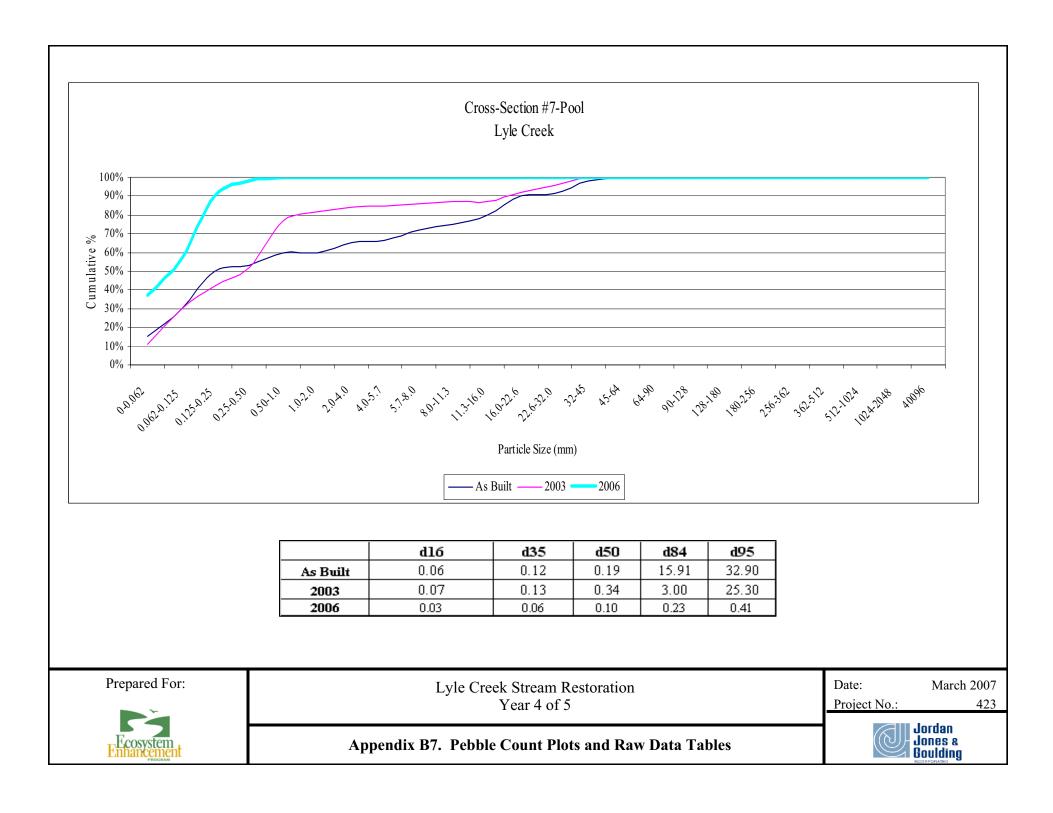

Date: March 2007 Project No.:


Appendix B7. Pebble Count Plots and Raw Data Tables


423


Cross-Section: 3	}										
Feature: Pool											
				As Built			2003			2006	
Description	Material	Size (mm)	Total #	Item %	Cum %	Total #	Item %	Cum %	Total #	Item %	Cum %
Silt/Clay	silt/clay	0-0.062	9	15%	15%	18	18%	18%	28	28%	28%
	very fine sand	0.062-0.125	9	15%	30%	14	14%	32%	25	25%	53%
Γ	fine sand		12	20%	50%	1	1%	33%	20	20%	73%
Sand	medium sand	0.25-0.50	2	3%	53%	10	10%	43%	5	5%	78%
Γ	coarse sand	0.50-1.0	4	7%	60%	37	37%	79%	2	2%	80%
Γ	very coarse sand	1.0-2.0	0	0%	60%	14	14%	93%	4	4%	84%
	very fine gravel	2.0-4.0	3	5%	65%	3	3%	96%	2	2%	86%
G	fine gravel	4.0-5.7	1	2%	67%	1	1%	97%	4	4%	90%
	fine gravel	5.7-8.0	3	5%	72%	0	0%	97%	3	3%	93%
r	medium gravel	8.0-11.3	2	3%	75%	0	0%	97%	3	3%	96%
a	medium gravel	11.3-16.0	3	5%	80%	3	3%	100%	4	4%	100%
v e l	course gravel	16.0-22.6	б	10%	90%	0	0%	100%	0	0%	100%
	course gravel	22.6-32.0	1	2%	92%	0	0%	100%	0	0%	100%
	very coarse gravel	32-45	4	7%	98%	0	0%	100%	0	0%	100%
	very coarse gravel	45-64	1	2%	100%	0	0%	100%	0	0%	100%
	small cobble	64-90	0	0%	100%	0	0%	100%	0	0%	100%
	medium cobble	90-128	0	0%	100%	0	0%	100%	0	0%	100%
Cobble	large cobble	128-180	0	0%	100%	0	0%	100%	0	0%	100%
	very large cobble	180-256	0	0%	100%	0	0%	100%	0	0%	100%
	small boulder	256-362	0	0%	100%	0	0%	100%	0	0%	100%
ъ., Г	small boulder	362-512	0	0%	100%	0	0%	100%	0	0%	100%
Boulder	medium boulder	512-1024	0	0%	100%	0	0%	100%	0	0%	100%
	large boulder	1024-2048	0	0%	100%	0	0%	100%	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%	0	0%	100%	0	0%	100%
TOTAL	%of whole count		60	100%	100%	101	100%	100%	100	100%	100%
TOTAL/ Prepared			60	I	100% Creek Str			100%	100	100%	100%
Ecosys	tem,		Append		Year	4 of 5		Data Table	<u>s</u>	Project No.:	Jordan Jones & Goulding


Project Name: Lyl Pross-Section: 4	10 0100K										
eature: Riffle											
				As Built			2003			2006	
Description	Material	Size (mm)	Total #	Item %	Cum %	Total #	Item %	Cum %	Total #	Item %	Cum %
Silt/Clay	silt/clay	0-0.062	9	15%	15%	34	37%	37%	21	21%	21%
	very fine sand	0.062-0.125	9	15%	30%	12	13%	49%	33	33%	54%
	fine sand	0.125-0.25	12	20%	50%	4	4%	54%	20	20%	74%
Sand	medium sand	0.25-0.50	2	3%	53%	8	9%	62%	0	0%	74%
	coarse sand	0.50-1.0	4	7%	60%	17	18%	81%	0	0%	74%
	very coarse sand	1.0-2.0	0	0%	60%	1	1%	82%	0	0%	74%
	very fine gravel	2.0-4.0	3	5%	65%	2	2%	84%	0	0%	74%
G	fine gravel	4.0-5.7	1	2%	67%	2	2%	86%	0	0%	74%
	fine gravel	5.7-8.0	3	5%	72%	3	3%	89%	0	0%	74%
r –	medium gravel	8.0-11.3	2	3%	75%	1	1%	90%	0	0%	74%
a —	medium gravel		3	5%	80%	0	0%	90%	4	4%	78%
v	course gravel		б	10%	90%	0	0%	90%	0	0%	78%
e 1	course gravel		1	2%	92%	4	4%	95%	5	5%	83%
	very coarse gravel	32-45	4	7%	98%	1	1%	96%	2	2%	85%
	very coarse gravel	45-64	1	2%	100%	2	2%	98%	5	5%	90%
	small cobble	64-90	0	0%	100%	0	0%	98%	б	6%	96%
	medium cobble	90-128	0	0%	100%	1	1%	99%	4	4%	100%
Cobble	large cobble	128-180	0	0%	100%	1	1%	100%	0	0%	100%
	very large cobble		0	0%	100%	0	0%	100%	0	0%	100%
	small boulder		0	0%	100%	0	0%	100%	0	0%	100%
ъ., Г	small boulder	362-512	0	0%	100%	0	0%	100%	0	0%	100%
Boulder	medium boulder	512-1024	0	0%	100%	0	0%	100%	0	0%	100%
	large boulder		0	0%	100%	0	0%	100%	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%	0	0%	100%	0	0%	100%
TOTA	AL/%of whole count		60	100%	100.00%	93	100%	100%	100	100%	100%
Prepared For:				Date: Project No.:	March						
		A	ppendix	Jordan Jones & Goulding							


ross-Section: :	5										
eature: Riffle											
				As Built		2003			2006		
Description	Material	Size (mm)	Total #	Item %	Cum %	Total #	Item %	Cum %	Total #	Item %	Cum %
Silt/Clay	silt/clay	0-0.062	9	15%	15%	13	13%	13%	13	13%	13%
	very fine sand	0.062-0.125	9	15%	30%	16	16%	29%	0	0%	13%
	fine sand	0.125-0.25	12	20%	50%	16	16%	45%	8	8%	21%
Sand	medium sand	0.25-0.50	2	3%	53%	б	6%	52%	2	2%	23%
	coarse sand	0.50-1.0	4	7%	60%	б	6%	58%	10	10%	33%
	very coarse sand	1.0-2.0	0	0%	60%	3	3%	61%	0	0%	33%
	very fine gravel	2.0-4.0	3	5%	65%	1	1%	62%	0	0%	33%
G	fine gravel	4.0-5.7	1	2%	67%	2	2%	64%	0	0%	33%
r	fine gravel	5.7-8.0	3	5%	72%	б	6%	70%	0	0%	33%
	medium gravel	8.0-11.3	2	3%	75%	4	4%	74%	0	0%	33%
a	medium gravel	11.3-16.0	3	5%	80%	4	4%	78%	0	0%	33%
v	course gravel	16.0-22.6	б	10%	90%	9	9%	87%	8	8%	41%
e l	course gravel	22.6-32.0	1	2%	92%	7	7%	94%	14	14%	55%
	very coarse gravel	32-45	4	7%	98%	4	4%	98%	14	14%	69%
	very coarse gravel	45-64	1	2%	100%	2	2%	100%	15	15%	84%
	small cobble	64-90	0	0%	100%	0	0%	100%	8	8%	92%
Cobble	medium cobble	90-128	0	0%	100%	0	0%	100%	4	4%	96%
Copple	large cobble	128-180	0	0%	100%	0	0%	100%	4	4%	100%
	very large cobble	180-256	0	0%	100%	0	0%	100%	0	0%	100%
	small boulder	256-362	0	0%	100%	0	0%	100%	0	0%	100%
Deulden	small boulder	362-512	0	0%	100%	0	0%	100%	0	0%	100%
Boulder	medium boulder	512-1024	0	0%	100%	0	0%	100%	0	0%	100%
	large boulder	1024-2048	0	0%	100%	0	0%	100%	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%	0	0%	100%	0	0%	100%
TOTAL/	%of whole count		60	100%	100%	99	100%	100%	100	100%	100%
Prepared For:					Date:	March 2					
			Lyle Creek Stream Restoration Year 4 of 5 Appendix B7. Pebble Count Plots and Raw Data Tables								Project No.:

Cross-Section: 6	le Creek												
Feature: Pool													
				As Built			2003			2006			
Description	Material	Size (mm)	Total #	Item %	Cum %	Total #	Item %	Cum %	Total #	Item %	Cum %		
Silt/Clay	silt/clay	0-0.062	9	23%	23%	13	13%	13%	20	20%	20%		
	very fine sand	0.062-0.125	10	25%	48%	25	25%	38%	2	2%	22%		
Γ		0.125-0.25	6	15%	63%	2	2%	40%	10	10%	32%		
Sand	medium sand	0.25-0.50	5	13%	75%	2	2%	42%	5	5%	37%		
Γ	coarse sand	0.50-1.0	5	13%	88%	9	9%	51%	9	9%	46%		
Γ	very coarse sand	1.0-2.0	0	0%	88%	4	4%	55%	0	0%	46%		
	very fine gravel	2.0-4.0	2	5%	93%	3	3%	58%	0	0%	46%		
G	fine gravel		0	0%	93%	1	1%	59%	0	0%	46%		
	fine gravel	5.7-8.0	0	0%	93%	1	1%	60%	0	0%	46%		
r	medium gravel	8.0-11.3	0	0%	93%	0	0%	60%	0	0%	46%		
a	medium gravel		2	5%	98%	б	6%	66%	б	6%	52%		
v	course gravel		0	0%	98%	4	4%	70%	12	12%	64%		
e l	course gravel	22.6-32.0	0	0%	98%	8	8%	78%	б	6%	70%		
	very coarse gravel	32-45	0	0%	98%	15	15%	93%	13	13%	83%		
F	very coarse gravel	45-64	1	3%	100%	7	7%	100%	2	2%	85%		
	small cobble	64-90	0	0%	100%	0	0%	100%	б	6%	91%		
	medium cobble	90-128	0	0%	100%	0	0%	100%	1	1%	92%		
Cobble	large cobble	128-180	0	0%	100%	0	0%	100%	3	3%	95%		
F	very large cobble	180-256	0	0%	100%	0	0%	100%	5	5%	100%		
	small boulder	256-362	0	0%	100%	0	0%	100%	0	0%	100%		
.	small boulder	362-512	0	0%	100%	0	0%	100%	0	0%	100%		
Boulder	medium boulder	512-1024	0	0%	100%	0	0%	100%	0	0%	100%		
F	large boulder		0	0%	100%	0	0%	100%	0	0%	100%		
Bedrock	bedrock		0	0%	100%	0	0%	100%	0	0%	100%		
TOTAL	%of whole count		40	100%	100.00%	100	100%	100%	100	100%	100%		
Prepared For:			Lyle	Date:	March 20								
				-		4 of 5				Project No.:	4		
		Append	ix B7. Pe	Jordan Jones & Goulding									

Project Name: L Cross-Section: 1	-										
Feature: Pool	;										
reature. FOOI				As Built			2003			2006	
Description	Material	Size (mm)	Total #	Item %	Cum %	Total #	Item %	Cum %	Total #	Item %	Cum %
Silt/Clay	silt/clay	0-0.062	9	15%	15%	11	11%	11%	37	37%	37%
	very fine sand		9	15%	30%	19	19%	30%	20	20%	57%
ľ		0.125-0.25	12	20%	50%	12	12%	42%	33	33%	90%
Sand	medium sand		2	3%	53%	10	10%	52%	8	8%	98%
ľ	coarse sand	0.50-1.0	4	7%	60%	25	25%	77%	2	2%	100%
	very coarse sand	1.0-2.0	0	0%	60%	5	5%	82%	0	0%	100%
	very fine gravel	2.0-4.0	3	5%	65%	2	2%	84%	0	0%	100%
G	fine gravel	4.0-5.7	1	2%	67%	1	1%	85%	0	0%	100%
	fine gravel	5.7-8.0	3	5%	72%	1	1%	86%	0	0%	100%
r	medium gravel	8.0-11.3	2	3%	75%	1	1%	87%	0	0%	100%
a	medium gravel	11.3-16.0	3	5%	80%	0	0%	87%	0	0%	100%
v e l	course gravel	16.0-22.6	б	10%	90%	5	5%	92%	0	0%	100%
	course gravel	22.6-32.0	1	2%	92%	4	4%	96%	0	0%	100%
	very coarse gravel	32-45	4	7%	98%	4	4%	100%	0	0%	100%
	very coarse gravel	45-64	1	2%	100%	0	0%	100%	0	0%	100%
	small cobble	64-90	0	0%	100%	0	0%	100%	0	0%	100%
Cobble	medium cobble	90-128	0	0%	100%	0	0%	100%	0	0%	100%
Copple	large cobble	128-180	0	0%	100%	0	0%	100%	0	0%	100%
	very large cobble	180-256	0	0%	100%	0	0%	100%	0	0%	100%
	small boulder	256-362	0	0%	100%	0	0%	100%	0	0%	100%
Boulder	small boulder	362-512	0	0%	100%	0	0%	100%	0	0%	100%
Domuel	medium boulder	512-1024	0	0%	100%	0	0%	100%	0	0%	100%
	large boulder	1024-2048	0	0%	100%	0	0%	100%	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%	0	0%	100%	0	0%	100%
TOTAL/	%of whole count		60	100%	100%	100	100%	100%	100	100%	100%
Prepared For:					Date: Project No.:	March 2					
			Appendi	ix B7. Pe	I	Jordan Jones & Goulding					

